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ABSTRACT
In recent years, market-consistent valuation approaches have gained an increasing importance for insur-

ance companies. This has triggered an increasing interest among practitioners and academics, and a

number of studies on such valuation approaches have been published. However, despite the fact that

many models are structurally similar, no generic modeling setup has been proposed so far.

In this paper, we present such a generic model for the valuation of life insurance contracts and embedded

options. Furthermore, we describe various numerical valuation approaches within our generic setup.

We particularly focus on contracts containing early exercise features since these present (numerically)

challenging valuation problems.

Based on an example of participating life insurance contracts, we illustrate the different approaches and

compare their efficiency in a simple and a generalized Black-Scholes setup, respectively. Moreover, we

study the impact of the considered early exercise feature on our example contract and analyze the influ-

ence of model risk by additionally introducing an exponential Lévy model.
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1 INTRODUCTION
In recent years, market-consistent valuation approaches for life insurance contracts have
gained an increasing practical importance.
In 2001, the European Union initiated the “Solvency II” project to revise and extend cur-
rent solvency requirements, the central intention being the incorporation of a risk-based
framework for adequate risk management and option pricing techniques for insurance
valuation. Furthermore, in 2004 the International Accounting Standards Board issued
the new International Financial Reporting Standard (IFRS) 4 (Phase I) which is also
concerned with the valuation of life insurance liabilities. Although Phase I just consti-
tutes a temporary standard, experts agree that fair valuation will play a major role in
the future permanent standard (Phase II), which is expected to be in place by 2010 (see
[29]).
However, so far, most insurance companies only have little knowledge about risk-neutral
valuation techniques and, hence, mostly rely on simple models and brute force Monte
Carlo simulations. This is mainly due to the fact that predominant software solutions
(e.g. Moses, Prophet, or ALM.IT) were initially designed for deterministic forecasts of
an insurer’s trade accounts and only subsequently extended to perform Monte Carlo sim-
ulations. In academic literature, on the other hand, there exists a variety of different
articles on the valuation of life insurance contracts. There is, however, no generic model-
ing setup and there are hardly any detailed comparisons of different numerical valuation
approaches. Moreover, some studies do not apply methods from financial mathematics
appropriately to the valuation of life insurance products (e.g. questionable worst-case
scenarios in [23] and [33]; see Sec. 3.1 below for details).
The objective of this article is to formalize the valuation problem for insurance contracts
in a general way and to provide a survey on concrete valuation methodologies. We par-
ticularly focus on the valuation of insurance contracts containing early-exercise features,
such as surrender options, withdrawal guarantees, or options to change the premium pay-
ment method. While almost all insurance contracts contain such features, insurers usually
do not include these in their price and risk management computations even though they
may add considerably to the value of the contract.
The remainder of the text is organized as follows: In Sect. 2, we present a generic model
for life insurance contracts. Subsequently, in Sect. 3, we describe different numerical
valuation approaches. Based on an example of participating life insurance contracts,
we carry out numerical experiments in Sect. 4. Similarly to most prior literature on
the valuation of life contingencies from a mathematical finance perspective, we initially
assume a general Black-Scholes framework. We compare the obtained results as well as
the efficiency of the different approaches and analyze the influence of a surrender option on
our example contract. However, as is well-known from various empirical studies, several
statistical properties of financial market data are not described adequately by Brownian
motion and, in general, guarantees and options will increase in value under more suitable
models. Therefore, we analyze the model risk for our valuation problem by introducing
an exponential Lévy model and comparing the obtained results for our example to those
from the Black-Scholes setup. We find that the qualitative impact of the model choice

1



Risk-neutral valuation of life insurance contracts

depends on the particular model parameters, i.e. that there exist (realistic) parameter
choices for which either model yields higher values, which is in contrast to the general
notion. Finally, the last section summarizes our main results.

2 GENERIC CONTRACTS
We assume that financial agents can trade continuously in a frictionless and arbitrage-
free financial market with finite time horizon T .1 Let

(
ΩF ,FF ,QF , FF = (FF

t )t∈[0,T ]

)
be

a complete, filtered probability space, where QF is a pricing measure and F
F is assumed

to satisfy the usual conditions. In this probability space, we introduce the q1-dimensional
vector (Y F

t )t∈[0,T ] = (Y
F,(1)
t , . . . , Y

F,(q1)
t )t∈[0,T ] of locally bounded, adapted Lévy processes,

and call it the state process of the financial market.
Within this market, we assume the existence of a locally risk-free asset (Bt)t∈[0,T ] with

Bt = exp
{∫ t

0
ru du

}

, where rt = r
(
t, Y F

t

)
is the short rate. Moreover, we allow for n ∈ N

other risky assets (A
(i)
t )t∈[0,T ], 1 ≤ i ≤ n, traded in the market with2

A
(i)
t = A(i)(t, Y F

t ), 1 ≤ i ≤ n.

In order to include the mortality component, we fix another probability space
(
ΩM ,GM ,

PM
)

and a homogenous population of x-year old individuals at inception. Similar to [12,
20], we assume that a q2-dimensional vector of locally bounded, adapted Lévy processes

(Y M
t )t∈[0,T ] = (Y

M,(q1+1)
t , . . . , Y

M,(q)
t )t∈[0,T ], q = q1+q2, on

(
ΩM ,GM ,PM

)
is given. Now let

µ(·, ·) : R+×R
q2 → R+ be a positive continuous function and define the time of death Tx of

an individual as the first jump time of a Cox process with intensity
(
µ(x + t, Y M

t )
)

t∈[0,T ]
,

i.e.

Tx = inf

{

t

∣
∣
∣
∣

∫ t

0

µ(x + s, Y M
s ) ds ≥ E

}

,

where E is a unit-exponentially distributed random variable independent of (Y M
t )t∈[0,T ]

and mutually independent for different individuals. Also, define subfiltrations F
M =

(
FM

t

)

t∈[0,T ]
and H = (Ht)t∈[0,T ] as the augmented subfiltrations generated by (Y M

t )t∈[0,T ]

and (1{Tx≤t})t∈[0,T ], respectively. We set GM
t = FM

t ∨Ht and G
M =

(
GM

t

)

t∈[0,T ]
.

Insurance contracts can now be considered on the combined filtered probability space

(
Ω,G,Q, G = (Gt)t∈[0,T ]

)
,

where Ω = ΩM × ΩF , G = FF ∨ GM , Gt = FF
t ∨ GM

t , and Q = QF ⊗ PM is the product
measure of independent financial and biometric events. We further let F = (Ft)t∈[0,T ],
where Ft = FF

t ∨ FM
t . A slight extension of the results by Lando ([34], Prop. 3.1) now

yields that for an Ft-measurable payment Ct, we have for u ≤ t3

Bu E
Q

[
B−1

t Ct 1{Tx>t}

∣
∣Gu

]

= 1{Tx>u} Bu E
Q

[

B−1
t Ct exp

{

−
∫ t

u

µ(x + s, Ys) ds

}∣
∣
∣
∣
Fu

]

,
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which can be readily applied to the valuation of insurance contracts. For notational
convenience, we introduce the realized survival probabilities

tp
(t)
x := E

Q
[1{Tx>t}

∣
∣Ft ∨H0

]
= exp

{

−
∫ t

0

µ(x + s, Y M
s ) ds

}

,

t−up
(t)
x+u :=

tp
(t)
x

up
(u)
x

= exp

{

−
∫ t

u

µ(x + s, Y M
s ) ds

}

, 0 ≤ u ≤ t,

as well as the corresponding one-year realized death probability

q
(t)
x+t−1 = 1 − p

(t)
x+t−1 = 1 − 1p

(t)
x+t−1.

While QF is specified as some given equivalent martingale measure, there is some flex-
ibility in the choice of PM . In a complete financial market, i.e. if QF is unique, with
a deterministic evolution of mortality and under the assumption of risk-neutrality of an
insurer with respect to mortality risk (cf. [2]), Møller ([39]) points out that if PM denotes
the physical measure, Q as defined above is the so-called Minimal Martingale Measure
(see [44]). This result can be extended to incomplete market settings when choosing QF

to be the Minimal Martingale Measure for the financial market (see e.g. [42]). However, in
[22], Delbaen and Schachermayer quote “the use of mortality tables in insurance” as “an
example that this technique [change of measure] in fact has a long history” in actuarial
sciences, indicating that the assumption of risk-neutrality with respect to mortality risk
may not be adequate. Then, the measure choice depends on the availability of adequate
mortality-linked securities traded in the market (see [21] for a particular example and [13]
for a survey on mortality-linked securities) and/or the insurer’s preferences (see [10] or
[40]). In what follows, we assume that the insurer has chosen a measure PM for valuation
purposes, so that a particular choice for the valuation measure Q is given.
To obtain a model for our generic life insurance contract, we analyze the way such con-
tracts are administrated in an insurance company. An important observation is that
cash flows, such as premium payments, benefit payments, or withdrawals, are often not
generated continuously but only at discrete points in time. For the sake of simplicity,
we assume that these discrete points in time are the anniversaries ν ∈ {0, . . . , T} of the
contract.
Therefore, the value Vν of some life insurance contract at time ν by the risk-neutral
valuation formula is:

Vν = Bν

T∑

µ=ν

E
Q

[
B−1

µ Cµ

∣
∣Fν

]
,

where Cµ is the cash flow at time µ, 0 ≤ µ ≤ T .
Since the value of our contract under the assumption that the insured in view is alive at
time t only depends on the evolution of mortality and the financial market, and as these
again only depend on the evolution of (Ys)s∈[0,t], we can write:

Vt = Ṽ (t, Ys, s ∈ [0, t]).
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But saving the entire history of the state process is cumbersome and, fortunately, un-
necessary: Within the bookkeeping system of an insurance company, a life insurance
contract is usually managed (or represented) by several accounts saving relevant infor-
mation about the history of the contract, such as the account value, the cash-surrender
value, the current death benefit, etc. Therefore, we introduce m ∈ N virtual accounts
(Dt)t∈[0,T ] = (D

(1)
t , . . . , D

(m)
t )t∈[0,T ], the so-called state variables, to store the relevant his-

tory. In this way, we obtain a Markovian structure since the relevant information about
the past at time t is contained in (Yt, Dt). Furthermore, we observe that these virtual
accounts are usually not updated continuously, but adjustments, such as crediting inter-
est or guarantee updates, are often only made at certain key dates. Also, policyholders’
decisions, such as withdrawals, surrenders, or changes to the insured amount, often only
become effective at predetermined dates. To simplify notation, we again assume that
these dates are the anniversaries of the contract. Therefore, to determine the contract
value at time t if the insured in view is alive, it is sufficient to know the current state of
the stochastic drivers and the values of the state variables at ⌊t⌋ = max{n ∈ N|n ≤ t},
i.e. the value of the generic life insurance contract can be described as follows:

Vt = V (t, Yt, Dt) = V (t, Yt, D⌊t⌋), t ∈ [0, T ].

We denote the set of all possible values of (Yt, Dt) by Θt.
Most models for the market-consistent valuation of life insurance contracts presented
in literature fit into this framework. For example, in [14], Brennan and Schwartz price
equity-linked life insurance policies with an asset value guarantee. Here, the value of the
contract at time t only depends on the value of the underlying asset which is modeled by
a geometric Brownian motion, i.e. we have an insurance contract which can be described
by a one-dimensional state processes and no state variables.
Participating life insurance contracts are characterized by an interest rate guarantee and
some bonus distribution rules, which provide the possibility for the policyholder to par-
ticipate in the earnings of the insurance company. Furthermore, these contracts usually
contain a surrender option, i.e. the policyholder is allowed to lapse the contract at time
ν ∈ {1, . . . , T}. Such contracts are, for instance, considered in [15, 25, 38]. All these
models can be represented within our framework. Moreover, the setup is not restricted
to the valuation of one “entire” insurance contracts, but, on one hand, it can also be
used to determine the value of multiple contracts at a time (see [26]) or, on the other
hand, parts of insurance contracts, such as embedded options. Clearly, we can determine
the value of an arbitrary option by computing the value of the same contract in- and
excluding that option, ceteris paribus. The difference in value of the two contracts is the
value of the option. For example, the generic model can be used in this way to analyze
paid-up and resumption options within participating life insurance contracts such as in
[23] or exchange options such as in [41]. Alternatively, the value of a certain embedded
option may be determined by isolating the cash-flows corresponding to the considered
guarantee (see [8]).
In [9], Bauer et al. consider Variable Annuities including so-called Guaranteed Mini-
mum Death Benefits (GMDBs) and/or Guaranteed Minimum Living Benefits (GMLBs).

4



Risk-neutral valuation of life insurance contracts

Again, their model structure fits into our framework. Bauer et al. use one stochastic
driver to model the asset process and eight state variables to specify the contract.

3 A SURVEY OF NUMERICAL METHODS
The contracts under consideration are often relatively complex, path-dependent deriva-
tives, and in most cases, analytical solutions to the valuation problems cannot be found.
Hence, one has to resort to numerical methods. In this section, we present different
possibilities to numerically tackle these valuation problems.

3.1 MONTE CARLO SIMULATIONS
Monte Carlo simulations are a simple and yet useful approach to the valuation of insur-
ance contracts provided that the considered contract does not contain any early exercise
features, i.e. policyholders cannot change or (partially) surrender the contract during its
term. We call such contracts European.
In this case, we can simulate K paths of the state process (Yt)t∈[0,T ], say (Y

(k)
t )t∈[0,T ],

k = 1, . . . , K, and compute the numéraire process, the realized survival probabilities as
well as the state variables at each anniversary of the contract. Then, the “value” of the
contract for path k, V

(k)
0 , 1 ≤ k ≤ K, is given as the sum of discounted cash flows in

path k, and, by the Law of Large Numbers (LLN), the risk-neutral value of the contract
at inception V0 may be estimated by the sample mean for K sufficiently large.
However, if the contract includes early exercise features, the problem is more delicate
since the value of the option or guarantee in view depends on the policyholder’s actions.
The question of how to incorporate policyholder behavior does not have a straight-forward
answer. From an economic perspective, one could assume that policyholders will maxi-
mize their personal utility, which would lead to a non-trivial control problem similar as
for the valuation of employee stock options (see [16], [28], or references therein). However,
the assumption of homogenous policyholders does not seem proximate. In particular, the
implied assertion that options within contracts with the same characteristics are exercised
at the same time does not hold in practice, and it is not clear how to include heterogeneity
among policyholders.
Alternatively, it is possible to assess the exercise behavior empirically. For such an ap-
proach, our framework provides a convenient setup: A regression of historical exercise
probabilities on the state variables could yield coherent estimates for future exercise be-
havior. However, aside from problems with retrieving suitable data, when adopting this
methodology insurers will face the risk of systematically changing policyholder behav-
ior, which has had severe consequences in the past. For example, the UK-based mutual
life insurer Equitable Life, the world’s oldest life insurance company, was closed to new
business due to solvency problems arising from a misjudgment of policyholders’ exercise
behavior of guaranteed annuity options within individual pension policies.
Hence, in compliance with ideas from the new solvency and financial reporting regulations,
we take a different approach and consider a valuation of embedded options as if they were
traded in the financial market. While from the insurer’s perspective, the resulting “value”
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may exceed the actual or realized value, it is a unique “supervaluation” in the sense that
policyholders have the possibility (or the option) to exercise optimally with respect to
the financial value of their contract. Moreover, the resulting “superhedging” strategy for
attainable embedded options is unique in the same sense.
In order to determine this value, we need to solve an optimal stopping problem. To
illustrate it, let us consider a life insurance contract with surrender option. The option
is most valuable if the policyholder behaves “financially rational”, i.e.

V0 = sup
τ∈Υ0

E
Q

[

(Bτ )
−1

τp
(τ)
x C(τ, Yτ , Dτ ) +

τ−1∑

ν=0

(Bν+1)
−1

νp
(ν)
x q

(ν+1)
x+ν f(ν + 1, Yν+1, Dν)

∣
∣
∣
∣
∣
F0

]

where C(ν, yν , dν) is the surrender value at time ν and f(ν, yν , dν−1) is the death benefit
upon death in [ν − 1, ν) if the state process and the state variables take values yν and dν

(dν−1 at t = ν−1), respectively, and Υ0 denotes the set of all stopping times in {1, . . . , T}.
Clearly, maximizing the exercise value over each single sample path and computing the
sample mean, as e.g. pursued in [23] and [33] for different types of contracts, overestimates
this value.
To determine a Monte Carlo approximation of this value, which we refer to as the contract

value in what follows, we need to rely on so-called “nested simulations”. We do not allow
for surrenders at inception of the contract, so we define C(0, y0, d0) := 0. By the Bellman
equation (see e.g. [11] for an introduction to dynamic programming and optimal control)
the contract value at time ν, ν ∈ {0, . . . , T − 1}, is the maximum of the exercise value
and the continuation value. The latter is the weighted sum of the discounted expectation
of the contract value given the information (yν , dν) ∈ Θν , i.e.

V (ν, yν , dν)

= max
{

C(ν, yν , dν), Bν E
Q

[

B−1
ν+1 p

(ν+1)
x+ν V (ν + 1, Yν+1, Dν+1)

∣
∣
∣ (Yν , Dν) = (yν , dν)

]

+ Bν E
Q

[

B−1
ν+1 q

(ν+1)
x+ν f(ν + 1, Yν+1, Dν)

∣
∣
∣ (Yν , Dν) = (yν , dν)

]}

.

We now generate a tree with T time steps and b ∈ N branches out of each node. We
start with initial value Y0 and then generate b independent successors Y 1

1 , . . . , Y b
1 . From

each node we generate again b successors and so on. To simplify notation, let X l1l2...lν
ν =

(Y l1l2...lν
ν , Dl1l2...lν

ν ). With this notation, an estimator for Vν , ν ∈ {0, . . . , T}, at node Y l1...lν
ν

is

V̂ l1...lν
ν :=







max
{

C(ν,X l1...lν
ν ), B

l1...lν
ν

b

∑b

l=1(B
l1...lν l
ν+1 )−1 pl1...lν l

x+ν V̂ l1...lν l
ν+1

+ B
l1...lν
ν

b

∑b

l=1(B
l1...lν l
ν+1 )−1ql1...lν l

x+ν f(ν + 1, Y l1...lν l
ν+1 , Dl1...lν

ν )
}

,ν ∈ {0, . . . , T − 1}
C(ν,X l1...lν

ν ) ,ν = T

where Bl1...lν
ν and pl1...lν

x+ν−1 (ql1...lν
x+ν−1) denote the values of the bank account and the one-year

survival (death) probability at t = ν in sample path (Y0, Y
l1
1 , . . . , Y l1...lν

ν ), respectively.
Using K replications of the tree, we determine the sample mean V̄0(K, b), and by the LLN
we get V̄0(K, b) → E

Q[V̂0] as K → ∞ almost surely. Hence, fixing b, we can construct an
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asymptotically valid (1 − δ) confidence interval for E
Q

[

V̂0

]

. But this estimator for the

risk-neutral value V0 = V (0, X0) is biased high (see [24], p. 433), i.e.

E
Q

[

V̂0

]

≥ V (0, X0),

where, in general, we have a sharp inequality. However, under some integrability con-
ditions the estimator is asymptotically unbiased and hence, we can reduce the bias by
increasing the number of branches b in each node.
In order to construct a confidence interval for the contract value V (0, X0), following [24],
we introduce a second estimator. It differs from the estimator introduced above in that
all but one replication are used to decide whether to exercise the option or not, whereas
in case exercising is not decided to be optimal, the last replication is employed. More
precisely, we define for ν ∈ {0, . . . , T − 1}

v̂l1...lν
νu :=







C(ν,X l1...lν
ν ) , if B

l1...lν
ν

b−1

b∑

l=1,l 6=u

(Bl1...lν l
ν+1 )−1 pl1...lν l

x+ν v̂l1...lν l
ν+1

+B
l1...lν
ν

b

b∑

l=1,l 6=u

(Bl1...lν l
ν+1 )−1ql1...lν l

x+ν f(ν + 1, Y l1...lν l
ν+1 , Dl1...lν

ν )

≤C(ν,X l1...lν
ν )

Bl1...lν
ν (Bl1...lνu

ν+1 )−1 pl1...lνu
x+ν v̂l1...lνu

ν+1 , otherwise

+Bl1...lν
ν (Bl1...lνu

ν+1 )−1ql1...lνu
x+ν f(ν + 1, Y l1...lνu

ν+1 , Dl1...lν
ν )

.

Then, averaging over all b possibilities of leaving out one replication, we obtain

v̂l1...lν
ν :=

{
1
b

∑b

u=1 v̂l1...lν
νu . ,ν ∈ {0, . . . , T − 1}

C(ν,X l1...lν
ν ) ,ν = T

.

Again using K replications of the tree, we obtain a second estimator for the contract value
by the sample mean v̄0(K, b) which is now biased low, and we can construct a second
asymptotically valid (1 − δ) confidence interval, this time for E

Q [v̂0].
Taking the upper bound from the first confidence interval and the lower bound from the
second one, we obtain an asymptotically valid (1 − δ)-confidence interval for V0:

(

v̄0(K, b) − z δ

2

sv(K, b)√
K

, V̄0(K, b) + z δ

2

sV (K, b)√
K

)

,

where z δ

2

is the δ
2
-quantile of the standard normal distribution. sV (K, b) and sv(K, b)

denote the sample standard deviations of the K replications for the two estimators.
The drawback for non-European insurance contracts is that the number of necessary
simulation steps increases exponentially in time. Since insurance contracts are usually
long-term investments, the computation of the value using “nested simulations” is there-
fore rather extensive and time-consuming. Moreover, for different options with several (or
even infinitely many) admissible actions, such as withdrawals within variable annuities,
the complexity will increase dramatically.
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3.2 A PDE APPROACH
P(I)DE methods bear certain advantages in comparison to the Monte Carlo approach.
On one hand, they include the calculation of certain sensitivities (the so-called “Greeks”;
see e.g. [27], Chapter 13), which are useful for hedging purposes. On the other hand,
they often present a more efficient method for the valuation of non-European insurance
contracts. The idea for this algorithm is based on solving the corresponding control
problem on a discretized state space and, for special insurance contracts, was originally
presented in [25] and [45].
The value Vt of our generic insurance contract depends on t, the state process Yt, and
the state variables Dt. By arbitrage arguments, it can be shown that the value function
is almost surely left-continuous at all policy anniversaries ν ∈ {1, . . . , T} (see [45]), i.e.

Vt
a.s.→ Vν as t → ν- .

Between two policy anniversaries, the evolution of the value function V depends on t and
Yt only, since the state variables remain constant. Consequently, given the state variables
Dν−1 = dν−1 and the value function at some time t0 ∈ [ν − 1, ν), Vt0 , depending on
whether the insured in view is alive at time t0 or not, the value function on the interval
[ν − 1, t0] is

Vt = E
Q

[

exp

{

−
∫ t0

t

rs + µ(x + s, Ys) ds

}

Vt0(“alive”)

∣
∣
∣
∣
Ft

]

︸ ︷︷ ︸

=:F (t,Yt)

+E
Q

[

exp

{

−
∫ t0

t

rs ds

}(

1 − exp

{

−
∫ t0

t

µ(x + s, Ys) ds

})

Vt0(“dead”)

∣
∣
∣
∣
Ft

]

.

Applying Itô’s formula for Lévy processes (see e.g. Prop. 8.18 in [18]), we obtain

dF (t, Yt) = k(t, Yt−, F (t, Yt−)) dt + dMt,

with drift term k(t, Yt−, F (t, Yt−)) and local martingale part Mt. Since, by construction,

(

exp

(

−
∫ t

0

rs + µ(x + s, Ys) ds

)

F (t, Yt)

)

t∈[ν−1,t0]

is a Q-local martingale, under certain technical conditions, the drift needs to be zero
Q-almost surely. This is a standard technique akin to the well-known Feynman-Kac
formula. We thus obtain a P(I)DE for the function F : (t, y) 7→ F (t, y):

−r(t, y)F (t, y) − µ(t, y)F (t, y) + k(t, y, F (t, y)) = 0 (1)

with terminal condition

F (t0, y) = V (t0, y, dν−1, “alive”).

Since the value function at maturity T is known for all (y, d) ∈ ΘT , we can construct a
backwards algorithm to obtain the value function on the whole interval [0, T ]:
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For t = T −u, u ∈ {1, . . . , T}, evaluate the P(I)DE (1) for “all possible” dT−u

with terminal condition

F (T − u + 1, yT−u+1) = sup
ϕT−u+1∈ΦT−u+1

V (T − u + 1, hϕT−u+1
(yT−u+1, dT−u)), (2)

where Φν is the set of all options that may be exercised at t = ν, and
hϕν

: Θν → Θν denotes the transition function which describes how the state
variables change at t = ν if option ϕν is exercised. Then, set

V (T − u, yT−u, dT−u)

= F (T − u, yT−u)

+E
Q

[

exp

{

−
∫ T−u+1

T−u

rs ds

}

q
(T−u+1)
x+T−u f(T − u + 1, yT−u+1, dt−u)

∣
∣
∣
∣
FT−u

]

.

In order to apply the algorithm, the state spaces Θν , ν = 0, . . . , T , are discretized and
interpolation methods are employed to determine the right-hand sides of (2) if the ar-
guments are off the grid. In particular, it is necessary to solve the P(I)DE for all state
variables on the grid separately, so that the efficiency of the algorithm highly depends on
the evaluation of the P(I)DEs.
In [45], the classical Black-Scholes model and a deterministic evolution of mortality are
assumed. In this case, the resulting PDE is the well-known Black-Scholes PDE, which
can be transformed into a one-dimensional heat equation, from which an integral repre-
sentation can be derived when the terminal condition is given. If a modified Black-Scholes
model with stochastic interest rates is assumed as in [47], the situation gets more complex:
The PDE is no longer analytically solvable and one has to resort to numerical methods.
For a general exponential Lévy process driving the financial market, PIDEs with non-
local integral terms must be solved. Several numerical methods have been proposed for
the solution, e.g. based on finite difference schemes (see e.g. [4, 19]), based on wavelet
methods ([37]), or Fourier transform based methods ([30, 36]).
While, in comparison to Monte Carlo simulations, the complexity does not increase ex-
ponentially in time, the high number of P(I)DEs needing to be solved may slow down
the algorithm considerably.

3.3 A LEAST-SQUARES MONTE CARLO APPROACH
The least-squares Monte Carlo (LSM) approach by Longstaff and Schwartz ([35]) was
originally presented for pricing American options but has recently also been applied to
the valuation of insurance contracts (see e.g. [5] and [41]). We present the algorithm
for life insurance contracts with a simple surrender option. Subsequently, problems for
the application of this method to more general embedded options as well as potential
solutions are identified.
As pointed out by Clément et al. ([17]), the algorithm consists of two different types of
approximations. Within the first approximation step, the continuation value function
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is replaced by a finite linear combination of certain “basis” functions. As the second
approximation, Monte Carlo simulations and least-squares regression are employed to
approximate the linear combination given in step one.
Again, let C(ν, yν , dν) be the payoff at time ν ∈ {1, . . . , T} if the stochastic drivers and
the state variables take values yν and dν , respectively, and the option is exercised at this
time. Furthermore, let C(s, ν, ys, ds), ν < s ≤ T describe the cash flow at time s given the
state process ys and the state variables ds, conditional on the option not being exercised
prior or at time ν, and the policyholder following the optimal strategy according to the
algorithm at all possible exercise dates s ∈ {ν +1, . . . , T} assuming that the policyholder
is alive at time ν.
The continuation value g(ν, Yν , Dν) at time ν is the sum of all expected future cash flows
discounted back to time ν under the information given at time ν, i.e.

g(ν, Yν , Dν) = E
Q

[
T∑

s=ν+1

exp

{

−
∫ s

ν

rudu

}

C(s, ν, Ys, Ds)

∣
∣
∣
∣
∣
Fν

]

.

To determine the optimal strategy at time t = ν, i.e. to solve the optimal stopping
problem, it is now sufficient to compare the surrender value to the continuation value
and choose the greater one. Hence, we obtain the following discrete valued stopping time
τ = τ1:

{
τT = T

τν = ν1{C(ν,Yν ,Dν)≥g(ν,Yν ,Dν)} + τν+11{C(ν,Yν ,Dν)<g(ν,Yν ,Dν)}, 1 ≤ ν ≤ T − 1
(3)

and the contract value can be described as

V (0, Y0, D0) = E
Q

[

exp

(

−
∫ τ

0

rudu

)

τp
(τ)
x C(τ, Yτ , Dτ )

∣
∣
∣
∣
F0

]

+E
Q

[
τ−1∑

ν=0

exp

{

−
∫ ν+1

0

ru du

}

νp
(ν)
x q

(ν+1)
x+ν f(ν + 1, Yν+1, Dν)

∣
∣
∣
∣
∣
F0

]

. (4)

Following [17], we assume that the sequence (Lj(Yν , Dν))j≥0 is total in L2(σ((Yν , Dν))),
ν = 1, . . . , T − 1, and satisfies a linear independence condition (cf. condition A1 and A2

in [17]), such that g(ν, Yν , Dν) can be expressed as

g(ν, Yν , Dν) =
∞∑

j=0

αj(ν)Lj(Yν , Dν), (5)

for some αj(ν) ∈ R, j ∈ N ∪ {0}.
For the first approximation, we replace the infinite sum in (5) by a finite sum of the first
J basis function. We call this approximation g(J).
Similarly to (3) and (4), we can now define a new stopping time τ (J) and a first approxi-
mation V (J) for the contract value by replacing g by g(J).
However, in general the coefficients (αj(ν))J−1

j=0 are not known and need to be estimated.
We use K ∈ N replications of the path (Yν , Dν), 0 ≤ ν ≤ T , and denote them by
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(Y
(k)
ν , D

(k)
ν ), 1 ≤ k ≤ K. The coefficients are then determined by a least-squares regres-

sion. We assume that the optimal strategy for s ≥ ν + 1 is already known and hence, for
each replication the cash flows C(s, ν, Y

(k)
s , D

(k)
s ), s ∈ {ν + 1, . . . , T}, are known. Under

these assumptions, the least-squares estimator for the coefficients is

α̂(K)(ν) = arg min
α(ν)∈RJ

{
K∑

k=1

[
T∑

s=ν+1

exp

(

−
∫ s

ν

r(k)
u du

)

C(s, ν, Y (k)
s , D(k)

s )

−
J−1∑

j=0

αj(ν)Lj(Y
(k)
ν , D(k)

ν )

]2





.

Replacing (αj(ν))J−1
j=0 by (α̂

(K)
j (ν))J−1

j=0 , we obtain the second approximation g(J,K) and

again, we define the stopping time τ (J,K) and another approximation V (J,K) of the value
function by replacing g by g(J,K).
With the help of these approximations, we can now construct a valuation algorithm for
our insurance contract:

First, simulate K paths of the state process up to time T and compute the
state variables under the assumption that the surrender option is not exercised
at any time. Since the contract value, and hence, the cash flow at maturity
T is known for all possible states, define the following cash flows:

C(T, T − 1, Y
(k)
T−1, D

(k)
T−1)

= p
(T )
x+T−1 C(T, Y

(k)
T , D

(k)
T ) + q

(T )
x+T−1 f(T, Y

(k)
T , D

(k)
T−1), 1 ≤ k ≤ K.

For ν=T − u, u ∈ {1, . . . , T − 1}, compute g(J,K) as described above and
determine the optimal strategy in each path by comparing the surrender value
to the continuation value. Then, determine the new cash flows.4 For s ∈
{T − u + 1, . . . , T}, we have

C(s, T − u − 1, Y (k)
s , D(k)

s )

=







0 , if the option is exercised
at T − u

p
(T−u)
x+T−u−1 · C(s, T − u, Y

(k)
s , D

(k)
s ) , otherwise

,

and for s = T − u we set

C(T − u, T − u − 1, Y
(k)
T−u, D

(k)
T−u)

=







p
(T−u)
x+T−u−1 · C(T − u, Y

(k)
T−u, D

(k)
T−u) , if the option is exercised

+q
(T−u)
x+T−u−1 · f(T + u, Y

(k)
T−u, D

(k)
T−u−1) at T − u

q
(T−u)
x+T−u−1 · f(T + u, Y

(k)
T−u, D

(k)
T−u−1) , otherwise

.
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At time ν=0, discount the cash flows in each path and average over all K

paths, i.e.

V (J,K)(0, Y0, D0) :=
1

K

K∑

k=1

V
(J,K,k)
0 (0, Y0, D0)

with

V (J,K,k)(0, Y0, D0) :=
T∑

s=1

C(s, 0, Y (k)
s , D(k)

s ) exp

(

−
∫ s

0

r(k)
u du

)

.

The two convergence results in Sect. 3 of [17] ensure that, under weak conditions, the
algorithm gives a good approximation of the actual contract value when choosing J and
K sufficiently large.
The LSM algorithm can be conveniently implemented for insurance contracts containing
a simple surrender option since the new future cash flows can be easily determined: If the
surrender option is exercised at ν0 ∈ {1, . . . , T − 1}, the cash flow C(ν0, ν0 − 1, Yν0

, Dν0
)

equals the surrender value and all future cash flows are zero.
If we have more complex early exercise features, the derivation of the future cash flows
could be more involved since the contract may not be terminated. For example, if a
withdrawal option in a contract including a Guaranteed Minimum Withdrawal Benefit
is exercised, this will change the states variables at that time. However, the future cash
flows for the new state variables will not be known from the original sample paths, i.e. it
is necessary to determine the new future cash flows up to maturity T . This may be very
tedious if it is a long-term insurance contract and the option is exercised relatively early.
In particular, if the option can be exercised at every anniversary and if the withdrawal
is not fixed but arbitrary with certain limits, this may increase the complexity of the
algorithm considerably.
A potential solution to this problem could be employing the discounted estimated condi-
tional expectation for the regression instead of the discounted future cash flows. However,
this will lead to a biased estimator (see [35], Sect. 1). But even if this bias is accepted,
another problem regarding the quality of the regression function may occur. In the LSM
algorithm, we determine the coefficients of the regression function with the help of sam-
ple paths that are generated under the assumption that no option is exercised at any
time, i.e. the approximation of the continuation value will be good for values which are
“close” to the used regressors. But g(J,K) may not be a good estimate for contracts with,
e.g., high withdrawals because withdrawals reduce the account balance, and hence, the
new state variables will not be close to the regressors. An idea of how to resolve this
problem might be the application of different sampling techniques: For each period, we
could determine a certain number of different initial values, simulate the development for
one period, compute the contract value at the end of this period and use the discounted
contract value as the regressand. However, determining these initial values, again, is not
straight-forward. We leave the further exploration of this issue to future research.
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Aside from these problems, the LSM approach bears profound advantages in comparison
to the other approaches: On one hand, the number of simulation steps increases linearly
in time and, on the other hand, it avoids solving a large number of P(I)DEs. Also, in
contrast to the P(I)DE approach, the LSM approach is independent of the underlying
asset model: The only part that needs to be changed in order to incorporate a new asset
model is the Monte Carlo simulation.

4 EXAMPLE: A PARTICIPATING LIFE INSURANCE CONTRACT
In this section, we compare the results obtained with the three different numerical ap-
proaches for a German participating life insurance contract including a surrender option.

4.1 THE CONTRACT MODEL
We consider the participating term-fix contract from [8] and [47]. While this contract is
rather simple and, in particular, does not depend on biometric events, it presents a con-
venient example to illustrate advantages and disadvantages of the presented approaches
and to compare them based on numerical experiments.
We use a simplified balance sheet to model the insurance company’s financial situation
(see Table 4.1). Here, At denotes the market value of the insurer’s asset portfolio, Lt

Assets Liabilities
At Lt

Rt

At At

Table 1: Simplified balance sheet

is the policyholder’s account balance, and Rt = At − Lt is the bonus reserve at time
t. Disregarding any charges, the policyholder’s account balance at time zero equals the
single up-front premium P , that is L0 = P . During its term, the policyholder may
surrender her contract: If the contract is lapsed at time ν0 ∈ {1, . . . , T}, the policyholder
receives the current account balance Lν0

. Furthermore, we assume that dividends are
paid to shareholders at the anniversaries in order to compensate them for adopted risk.
As in [8] and [47], we use two different bonus distribution schemes, which describe the
evolution of the liabilities: The MUST-case describes what insurers are obligated to pass
on to policyholders according to German regulatory and legal requirements, whereas the
IS-case models the typical behavior of German insurance companies in the past; this
distribution rule was first introduced by Kling et al. (see [32]).

4.1.1 THE MUST-CASE
In Germany, insurance companies are obligated to guarantee a minimum rate of interest g

on the policyholder’s account, which is currently fixed at 2.25%. Furthermore, according
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to the regulation about minimum premium refunds in German life insurance, a minimum
participation rate δ of the earnings on book values has to be passed on to the policyhold-
ers. Since earnings on book values usually do not coincide with earnings on market values
due to accounting rules, we assume that earnings on book values amount to a portion y

of earnings on market values. The earnings on market values equal A−
ν − A+

ν−1, where
A−

ν and A+
ν = A−

ν −dν describe the market value of the asset portfolio shortly before and
after the dividend payments dν at time ν, respectively. Therefore, we have

Lν = (1 + g) Lν−1 +
[
δy

(
A−

ν − A+
ν−1

)
− gLν−1

]+
, 1 ≤ ν ≤ T. (6)

Assuming that the remaining part of earnings on book values is paid out as dividends,
we have

dν = (1 − δ)y
(
A−

ν − A+
ν−1

)1{δy(A−

ν −A+

ν−1)>gLν−1}
+

[
y

(
A−

ν − A+
ν−1

)
− gLν−1

]1{δy(A−

ν −A+

ν−1)≤ gLν−1 ≤ y(A−

ν −A+

ν−1)}. (7)

4.1.2 THE IS-CASE
In the past, German insurance companies have tried to grant their policyholders stable
but yet competitive returns. In years with high earnings, reserves are accumulated and
passed on to policyholders in years with lower earnings. Only if the reserves dropped
beneath or rose above certain limits would the insurance companies decrease or increase
the bonus payments, respectively.
In the following, we give a brief summary of the bonus distribution introduced by Kling
et al. ([32]), which models this behavior.
The reserve quota xν is defined as the ratio of the reserve and the policyholder’s account,

i.e. xν = Rν

Lν
= A+

ν −Lν

Lν
= A−

ν −dν−Lν

Lν
. Let z ∈ [0, 1] be the target interest rate of the

insurance company and α ∈ [0, 1] be the proportion of the remaining surplus after the
guaranteed interest rate is credited to the policyholder’s account that is distributed to
the shareholders. Whenever the target interest rate z leads to a reserve quota between
specified limits a and b with

Lν = (1 + z)Lν−1

dν = α (z − g) Lν−1

A+
ν = A−

ν − dν

Rν = A+
ν − Lν ,

then exactly the target interest rate z is credited to the policyholder’s account.
If the reserve quota drops below a or exceeds b when crediting z to the policyholder’s
account, then the rate is chosen such that it exactly results in a reserve quota of a or b,
respectively. However, (6) needs to be fulfilled in any case. Hence, by combining all cases
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and conditions, we obtain (see [47]):

Lν = (1 + g) Lν−1 + max

{
[
δy

(
A−

ν − A+
ν−1

)
− gLν−1

]+
,

(z − g) Lν−11{((1+a)(1+z)+α(z−g))Lν−1≤A−

ν ≤((1+b)(1+z)+α(z−g))Lν−1}

+
1

1 + a + α

[
A−

ν − (1 + g)(1 + a)Lν−1

]1{(1+a)(1+g)Lν−1<A−

ν <((1+a)(1+z)+α(z−g))Lν−1}

+
1

1 + b + α

[
A−

ν − (1 + g)(1 + b)Lν−1

]1{((1+b)(1+z)+α(z−g))Lν−1<A−

ν }
}

,

and

dν = max

{

α
[
δy

(
A−

ν − A+
ν−1

)
− gLν−1

]+
,

α (z − g) Lν−11{((1+a)(1+z)+α(z−g))Lν−1≤A−

ν ≤((1+b)(1+z)+α(z−g))Lν−1}
+

α

1 + a + α

[
A−

ν − (1 + g)(1 + a)Lν−1

]1{(1+a)(1+g)Lν−1<A−

ν <((1+a)(1+z)+α(z−g))Lν−1}

+
α

1 + b + α

[
A−

ν − (1 + g)(1 + b)Lν−1

]1{((1+b)(1+z)+α(z−g))Lν−1<A−

ν }
}

.

4.2 ASSET MODELS (I)
We consider two different asset models, namely a geometric Brownian motion with de-
terministic interest rate (constant short rate r), and a geometric Brownian motion with
stochastic interest rates given by a Vasicek model (see [46]).
In the first case, we have the classical Black-Scholes (BS) setup, so the asset process
under the risk-neutral measure Q evolves according to the SDE:

dAt = rAt dt + σAAt dWt, A0 = P (1 + x0),

where r is the constant short rate, σA > 0 denotes the volatility of the asset process A,
and W is a standard Brownian motion under Q. Since we allow for dividend payments
at each anniversary of the contract, we obtain

A−
t = A+

t−1 exp

(

r − σ2
A

2
+ σA (Wt − Wt−1)

)

.

In the second case, we have a generalized Black-Scholes model with

dAt = rtAt dt + ρσAAt dWt +
√

1 − ρ2σAAt dZt, A0 = P (1 + x0),

drt = κ (ξ − rt) dt + σr dWt, r0 > 0,
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where ρ ∈ [−1, 1] describes the correlation between the asset process A and the short
rate r, σr is the volatility of the short rate process, and W and Z are two independent
Brownian motions. ξ and κ are constants. Hence,

A−
t = A+

t−1 exp

(∫ t

t−1

rsds − σ2
A

2
+

∫ t

t−1

ρσAdWs +

∫ t

t−1

√

1 − ρ2σAdZs

)

.

We refer to this model as the extended Black-Scholes (EBS) model.
According to the risk-neutral valuation formula, the value for our participating life insur-
ance contract including a surrender option is given by:5

V NON−EUR
0 = sup

τ∈Υ0

E
Q

[

exp

{

−
∫ τ

0

ru du

}

Lτ

∣
∣
∣
∣
F0

]

. (8)

For a discussion of the problems occurring when implementing a suitable hedging strategy
as well as potential solutions, we refer to [8] and [47].

4.3 CHOICE OF PARAMETERS AND REGRESSION FUNCTION
To compare results, we use the same parameters as in [8] and [47]. We let the guaranteed
minimum interest rate g = 3.5%,6 the minimum participation rate δ = 90%, and the
minimal proportion of market value earnings that has to be identified as book value
earnings in the balance sheet y = 50%. Moreover, the reserve corridor is defined to be
[a, b] = [5%, 30%], the proportion of earnings that is passed on to the shareholders is
fixed at α = 5%, and the volatility of the asset portfolio is assumed to be σA = 7.5%.
The correlation between asset returns and money market returns is set to ρ = 0.05. We
consider a contract with maturity T = 10 years. The initial investment is P = 10, 000,
the insurer’s initial reserve quota is x0 = 10%, and the initial (or constant) interest rate
r0 = r is set to 4%. In the Vasicek model, the volatility of the short rate process σr

is chosen to be 1%, the mean reversion rate is κ = 0.14, and the mean reversion level
ξ = 4%.
A crucial point in the LSM approach for non-European contracts is the choice of the
regression function as a function of the state process and the state variables. Clearly, in
the current setup, the state processes are (At)t∈[0,T ] and (At, rt)t∈[0,T ] for the BS and the
EBS model, respectively, and the state variables can be represented by (Dν)ν∈{1,...,T−1} =
(A+

ν , Aν , Lν)ν∈{1,...,T−1} in both models. Using a top down scheme, we found that a regres-
sion function with eight different terms is sufficient; more terms do not make a significant
difference. We estimate the continuation value with the help of the following regression
function:7

g(8)(Dν) = g(8)(A+
ν , Aν , Lν) = α0(ν) + α1(ν)A+

ν + α2(ν)Lν + α3(ν)xν + α4(ν)x2
ν

+α5(ν)erν + α6(ν)(erν )2 + α7(ν)rν ,

where xν = A+
ν −Lν

Lν
is the reserve quota and α0(ν), . . . , α7(ν) ∈ R. We use the same

regression function at all times ν ∈ {1, . . . , T − 1} but, of course, the coefficients may
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vary. Note that in this particular setup, the dimensionality of the problem can be further
reduced by modifying the state process: Here, it is sufficient to consider

Ãt = A+
ν−1 ·

At

Aν−1

and rt as above in the corresponding one period problem, i.e. for t ∈ [ν − 1, ν], and
consequently, it suffices to save (A+

ν , Lν) as the state variables in both asset models (cf.
[8, 47]).
Note that we do not have to specify a regression function for the European contract case:
Here, the LSM approach trivially coincides with the simple Monte Carlo approach.

4.4 NUMERICAL EXPERIMENTS
The valuation of European contracts, i.e. contracts without surrender option, is sim-
ple. Here, Monte Carlo simulations provide a fast and accurate valuation methodology.
Therefore, we focus on the valuation of non-European contracts.
We start by analyzing the valuation via “Nested Simulations”. Table 4.4 shows our results
for 5,000 trees with 1 to 7 paths per node in the MUST-case and the BS setting. Aside
from the two estimators V̂0 and v̂0, the (real) times for the procedures are displayed.8

The difference between the two estimators is relatively large even for 7 paths per node.

paths per node V̂0 v̂0 time
1 10523.4 10055.0 < 1 sec.
2 10411.0 10051.6 15 sec.
3 10395.6 10100.3 11 min. 37 sec.
4 10388.8 10169.8 2 h 47 min.
5 10380.2 10228.6 ≈ 1 day
6 10378.6 10270.3 ≈ 6 days
7 10375.6 10293.8 ≈ 30 days

Table 2: ”Nested Simulations” for a non-European contract

In particular, this means that resulting confidence intervals are relatively wide. Hence,
although Monte-Carlo simulations are the only considered approach where confidence
intervals may be produced, the computational effort to produce results in a reliable range
is enormous.
Within the PDE and LSM approach, on the other hand, we find that for both asset
models, the contract values resulting from the two approaches differ by less than 0.2%
of the initial investment (see Table 4.4). However, the PDE approach is more sensi-
tive to discretization errors and takes significantly more time: In the BS model, in the
current computation environment, it takes approximatively 10 minutes to compute the
non-European contract value with the PDE approach, whereas with the LSM approach,
we obtain the result in approximately 24 seconds. The difference is even more pronounced
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MUST BS IS BS MUST EBS IS EBS

PDE LSM PDE LSM PDE LSM PDE LSM
NON-EUR 10360.4 10361.2 10919.1 10920.0 10619.1 10603.9 11103.0 11088.9

EUR 10360.4 10361.2 10919.1 10920.0 10449.9 10452.0 11020.7 11022.9
SUR 0 0 0 0 169.2 151.9 82.3 66.0

Table 3: Contract values in the two asset models9

in the EBS model. Here we have about 40 hours with the PDE approach compared to
about 30 seconds with the LSM approach.
While clearly all results depend on the particular implementations and the contract in
view, due to the magnitude of the differences, we conclude that for the valuation of non-
European insurance contracts for financial reporting within Solvency II and/or IFRS 4,
the LSM approach appears to be the superior choice for determining the risk-neutral
value. However, if additional sensitivities need to be computed for risk management
purposes (“the Greeks”), the PDE method may still present a valuable alternative.

4.5 INFLUENCE OF THE SURRENDER OPTION
While values for the surrender option within this particular contract model have been
calculated before in [8] and [47] via PDE approaches, no detailed sensitivity analyses
are presented due to the high computational effort. However, the LSM approach allows
for such analyses. We fix the parameters as indicated above (cf. Sec. 4.3), but as in
the latter part of [47] choose an alternative value for the volatility parameter. For the
S&P 500 index, Schoutens ([43]) finds an implied volatility of 18.12%, but since insurers’
asset portfolios contain a limited proportion of risky assets only,10 we choose σ = 0.03624,
which approximately corresponds to a portfolio consisting of 20% S&P 500 and 80% short
maturity bonds.

MUST g=2.25% g=3.5% g=4.0% IS g=2.25% g=3.5% g=4.0%
NON-EUR 9885.3 9966.8 10065.8 NON-EUR 10326.3 10450.8 10565.9

EUR 8976.0 9687.8 10065.8 EUR 10177.8 10419.5 10565.9
SUR 909.3 279.0 0.0 SUR 148.5 31.3 0.0

Table 4: Value of the surrender option in the BS model

Table 4.5 presents the values of the surrender option in the BS model for three different
choices of the guaranteed rate g. We find that for low g in the MUST-case, the surrender
option is of significant value. However, the non-European contract values are almost equal
to the initial premium of 10,000, so this is clearly due to the possibility of surrendering
the contract early in its term. The surrender option is considerably less valuable in the
IS-case since the target interest rate exceeds the riskless interest rate, and therefore, in
most cases, it is advantageous not to exercise. Moreover, for a high guaranteed rate g,
the rationale for surrendering decreases in both case since the contract is close to the
riskless asset with an additional option feature.
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Figure 1 illustrates the influence of g on the value of the surrender option in the EBS
model. We observe the same effects as in the BS model. The option value is smaller in
the IS-case than in the MUST-case, and it is decreasing in g. However, in this case the
value of the option is positive even for guaranteed interest rates exceeding 4% because
interest rates could increase over the term of the contract.
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Figure 1: Influence of g on the value of the surrender option in the EBS model

All in all, we find that even though in many cases the influence of the surrender option
is not very pronounced, the value for some parameter combinations is significant. In
particular, this means that in changing environments, as e.g. increasing interest rates, the
option adds significantly to the value of the contract and, hence, should not be disregarded
by insurance companies. Moreover, for different kinds of non-European options and/or
contracts, the influence may be significantly more pronounced (see e.g. [9] for Guaranteed
Minimum Benefits within Variable Annuities).

4.6 ASSET MODELS (II)
Although the Black-Scholes model is still very popular in practice, numerous empirical
studies suggest that it is not adequate to describe many features of financial market data.
Exponential Lévy models present one possible alternative and have become increasingly
popular. To assess the influence of model risk on our example contract, we introduce a
third asset model with a normal inverse Gaussian (NIG) process driving the asset process
(At)t∈[0,T ]. This model better represents the statistical properties of empirical log returns.
Similar exponential Lévy models have been applied to the valuation of insurance contracts
by different authors (see e.g. [6] or [31]).
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The probability density function of an NIG(α, β, δ,m) distribution is given by

ΦNIG(x, α, β, δ,m) =
αδ

π
exp

(

δ
√

α2 − β2 + β(x − m)
) K1

(

α
√

δ2 + (x − m)2
)

√

δ2 + (x − m)2
,

where K1 denotes the modified Bessel function of the third kind with index 1, and an
NIG process is defined as a Lévy process (Xt)t∈[0,T ] at zero with Xt ∼ NIG(α, β, δ · t,m · t)
(see [7] or [43] for more details).
As in the classical BS model, we assume a constant short rate r and define our exponential
Lévy (NIG) model by

At = A0e
Xt ,

where Xt ∼ NIG(α, β, δ · t,m · t) under “a” risk-neutral measure Q: Financial markets
driven by Lévy processes are generally not complete, and hence, the equivalent martingale
measure is not unique. There are different methods of how to choose a valuation measure,
e.g. by the so-called Esscher transform or the mean correcting method. As in [31], we use
the mean correcting method. Here, the parameters α, β, and δ are calibrated to observed
option prices, and the parameter m is chosen such that the discounted price process is a
martingale under Q, i.e.

m = r + δ

(√

α2 − (β + 1)2 −
√

α2 − β2

)

.

Hence, under the risk-neutral measure Q, for this asset model we have

A−
t = A+

t−1e
Xt−Xt−1 , Xt ∼ NIG(α, β, δ · t,m · t).

Again following [31], we choose the parameters resulting from the calibration procedure
for the S&P 500 index from [43] based on call options prices, i.e. α = 6.1882, β =
−3.8941, and δ = 0.1622, where the volatility from [43] is adapted according to our
assumptions on the asset portfolio.

4.7 MODEL RISK: THE BS MODEL VS. THE NIG MODEL
While one may expect that the contract increases in value when changing the asset process
from a geometric Brownian motion to an exponential Lévy model, Table 4.7 illustrates
that this is not always the case.11 At least in the MUST-case, the question of whether the
European contract value is higher for the BS or the NIG model depends on the guaranteed
minimum interest rate. This can be explained by considering the different shapes of the
two corresponding density functions. In the MUST-case, for a European contract with
maturity T = 1, we have

L1 = (1 + g) P +
[
δy

(
A−

1 − A+
0

)
− gP

]+
= (1 + g) P +

[
P

(
δy (1 + x0) (eX1 − 1) − g

)]+
,
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g=2.25% g=3.5% g=4.0%
BS NIG BS NIG BS NIG

MUST 8976.0 9040.0 9687.8 9671.4 10065.8 10042.5
IS 10177.8 10279.0 10419.5 10490.0 10565.9 10613.3

Table 5: European contract values in the BS and NIG model

where X1 is Normal and NIG distributed in the BS and the NIG model, respectively, and
thus

V i
0 = E

Q
[
L1e

−r
]

= e−r

[

(1 + g) P +

∫ ∞

c

P [δy (1 + x0) (eu − 1) − g] φi(u)du

]

, i ∈ {BS, NIG}.

(9)

where c = log
(

g

(1+x0)δy
+ 1

)

and φBS (φNIG) is the corresponding density of the log returns

within the BS (NIG) model.
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Figure 2: Influence of g on the difference in the contract values (MUST-case, T = 1)

The left-hand side of Figure 2 now illustrates the difference in values for the two models

∆V0 = V NIG
0 − V BS

0 ,

and we find that for g smaller than approximately 3%, the contract is worth more in
the NIG model, whereas for g between 3% and 7%, the BS model yields higher contract
values. If the guaranteed interest rate is unrealistically high (≥ 7%), the difference is
comparatively negligible. In order to analyze this behavior, in view of (9) it is now suffi-
cient to compare both density functions with parameters fitted to the data as described
above (see the right-hand side of Figure 2): For low values of g, the interest rate guarantee
is worth more within the NIG model due to the increased kurtosis of the corresponding
distribution. However, for an increasing level of g, this influence vanishes and the option
in the BS model becomes more valuable due to the skewness of the NIG distribution. In
contrast, in the IS-case the contract is worth more in the NIG model since the target rate
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z is credited unless very extreme outcomes occur, which are clearly “more likely” under
the NIG distribution.
But not only the guaranteed minimum interest rate g influences this relationship. The
left-hand side of Figure 3 illustrates the influence of the stock proportion within the
insurer’s asset portfolio on the difference in contract values in the two models for the
MUST-case, g = 3.5%, and T = 10. For small proportions, the difference of the two
contract values is negative, i.e. the value in the BS model is higher, due to the afore-
mentioned effect. However, a higher stock proportion increases the volatility, and in the
NIG model, the tails “fatten” faster than in the BS model. From a stock proportion of
about 30%, this leads to a higher value for the NIG driven model.
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Figure 3: Influence of the stock proportion on the difference in the contract values
(MUST-case, T = 10)

The right-hand side of Figure 3 shows combinations of g and the stock proportion that
result in a “fair” contract,12 i.e. the contract value equals the initial investment of 10,000.
For low g and the standard parameters, the contract values lie below 10,000. Hence, the
stock proportion needs to be increased in order to yield a fair contract. Since for small
g, the NIG model leads to higher contract values than the BS model, the increase in the
stock proportion is comparatively lower in the NIG model. In contrast to this, in the
IS-case we cannot find any realistic fair parameter combinations at all.
All in all, our analyses show that for our example contract and a realistic range for the
parameters, the influence of the asset model on the contract value is rather small and
it depends on the particular parameter choice which model leads to the higher value.
However, clearly the influence may be a lot more pronounced for different embedded
options and/or contracts.

5 CONCLUSION
In this paper, we construct a generic valuation model for life insurance benefits and give
a survey on existing valuation approaches. Firstly, we explain how to use Monte Carlo
simulations for the valuation. The Monte Carlo approach yields fast results for European
contracts, i.e. contracts without any early exercise features, but it is inefficient for the
valuation of long-term non-European contracts: In this case, the number of necessary
simulation steps to obtain accurate results may be extremely high. Secondly, we present
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a discretization approach based on the consecutive solution of certain partial (integro-)
differential equations (PDE approach). This approach is more apt for the valuation of
long-term non-European contracts and allows for the calculation of the “Greeks”, but
depending on the model specifications solving the P(I)DEs can be very complex and can
slow down the algorithm considerably.
Lastly, we discuss the so-called least-squares Monte Carlo approach. It combines the
advantages of the Monte Carlo and the PDE approach: On one hand, it is a backward
iterative scheme such that early exercise features can be readily considered and, on the
other hand, it remains efficient even if the dimension of the state space becomes larger
as the valuation is carried out by Monte Carlo simulations rather than the numerical
solution of P(I)DEs.
We apply all algorithms to the valuation of participating life insurance contracts and
initially consider two asset models, namely the classical Black-Scholes setup and a gen-
eralized Black-Scholes model with stochastic interest rates. Our numerical experiments
show that the differences in the computational time needed for the valuation of non-
European contracts is enormous.
Furthermore, again based on the example of participating life insurance contracts, we an-
alyze the influence of the “early exercise feature”, i.e. a surrender option, as the difference
between the non-European and European contract. We find that for many scenarios, the
surrender option is (almost) worthless in this particular case. However, we demonstrate
that the sensitivities of European and non-European contract values with respect to key
contract parameters differ considerably, so that disregarding this contract feature may be
misleading.
Finally, we study the impact of model risk on our example contract by additionally intro-
ducing an exponential Lévy (NIG) model for the asset side. Comparing the NIG model
to the classical Black-Scholes model, we find that for realistic parameter combinations,
the influence is not very pronounced. In particular, it depends on the parameter choice
which model yields higher contract values.
All in all, this article provides a framework for the market-consistent valuation of life
insurance contracts and a survey as well as a discussion of different numerical methods
for applications in practice and academia. Our numerical experiments give insights on
the effectiveness of the different methods and show that the influence of early exercise
features should be analyzed.

NOTES
1In actuarial modeling, it is common to assume a so-called limiting age meaning that a finite time

horizon naturally suffices in view of our objective.
2We denote by A

(i)
t only assets which are not solely subject to interest rate risk, e.g. stocks or

immovable property. The price processes of non-defaultable bonds traded in the market are implicitly
given by the short rate process.

3In what follows, we write µ(x + t, Yt) := µ(x + t, Y M
t ) and r (t, Yt) := r

(
t, Y F

t

)
, where (Yt)t∈[0,T ] :=

(
Y F

t , Y M
t

)

t∈[0,T ]
is the state process.

4Note that we do not use the estimated continuation value but the actual cash flows for the next
regression. Otherwise the estimator will be biased (cf. [35]).
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5Υ0 is the set of all stopping times in {1, . . . , T}.
6The largest German insurer “Allianz Lebensversicherungs-AG” reports an average guaranteed inter-

est rate of approximately 3.5% in 2006 (see [3], p. 129).
7Note that in the BS model, the last three terms may be discarded.
8All numerical experiments were carried out on a Linux machine with a Pentium IV 2.40 Ghz CPU

and 2.0 GB RAM, with no other user processes running.
9The values for the PDE approach are taken from [8] and [47], respectively. Here, the PDE approach

is only used to valuate the surrender option. The European contract values are calculated using Monte
Carlo techniques to obtain a higher accuracy. The difference of the European contract values is due to
Monte Carlo errors.

10By the regulation on investments ([1]), German insurers are obligated to keep the proportion of
stocks within their asset portfolio below 35%. For example, the German “Allianz Lebensversicherungs-
AG” reports a proportion of 21% stocks in 2006 (see [3], p. 32).

11Since the differences in contract values for the two asset models are consistent for European and
non-European contracts, we only present results for European contracts.

12For a discussion of the notion “fairness” we refer to [8].
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