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1. INTRODUCTION 

Many financial products contain prepayment options. Loan con- 
tracts are often structured to provide the borrower with the option to 
prepay the loan at any time, or on specific dates, prior to the maturity 
date of the loan. These options are important aspects of these financial 
products. The most commonly encountered investment product with 
these feature is the mortgage backed security. Investment contracts 
issued by life insurance companies contain similar options where the 
policyholder is allowed to surrender the policy with no surrender charge. 

This paper analyses loan contracts with such a prepayment option. 
The loan contracts are fixed interest rate loans with no restrictions on 
the pattern of prepayments. They can take the form of credit-fancier 
level repayment contracts, interest only and bullet principal repayment 
contracts or any other contractual repayment structure. The method 
that is used to price these contracts set out in this paper is a general 
algorithm based approach which is not dependent on the structure of 
the loan cash flows. The algorithm allows for stochastic interest rates 
and incorporates a one-factor term structure of interest rates model. 
The algorithm is arbitrage free in the sense that the parameters of 
the one-factor term structure model are chosen to ensure that prices of 
zero coupon bonds at traded maturities are priced so that the algorithm 
produces values equal to the market prices of such bonds on the valuation 
date. 

This paper does not develop new theoretical results. It aims to illus- 
trate the practical implementation of some of the techniques of modern 
financial mathematics and economics as developed for the analysis of 
interest rate options. Section 1 of the paper details the nature of the 
prepayment risk in these loan contracts. Section 2 sets out the alge 
rithms that are the basis of the implementation of a one-factor arbitrage 
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free term structure model and shows how such a model is used to value 
the prepayment risk in such loan contracts. Section 3 sets out the formu- 
lae and algorithms for determining the conventional risk statistics used 
in the management of a portfolio of loan contracts with prepayment 
options. These include the delta, gamma, theta, duration and convexity 
of the loan cash flows. Section 4 briefly discusses some issues related 
to the management of a portfolio of these loan contracts and how the 
prepayment and interest rate risk of these loans might be hedged in 
financial markets. 

2. PREPAYMENT RISK 

This paper will consider prepayment risk from the point of view of 
an issuer of loans with early repayment options. Prepayment risk arises 
in such a loan contract when the borrower is given the option to prepay 
a fixed interest rate loan prior to the maturity date of the loan without 
penalty. In this paper the loan contract analysed is a fixed interest 
rate, fixed term loan. It is assumed that under the terms of the loan 
agreement the borrower can repay the loan for the balance outstanding 
regardless of current market interest rates at any time during the term 
of the loan. 

The prepayment option reflects the difference between the value 
of the outstanding loan repayments at the interest rate at the time 
of prepayment for the remaining term of the loan less the amount of 
the loan then outstanding (which is the value of the outstanding loan 
repayments at the original loan interest rate). If interest rates have 
fallen then the payoff from the prepayment option would be positive. 
The option would be “in the money”. Similarly if rates have risen then 
the prepayment option would be out of the money. 

3. VALUATION OF LOAN CONTRACTS WITH PREPAYMENT OPTIONS 

The loan contract is the equivalent of a fixed rate loan with an 
option to repay early. The option is a call option held by the customer 
on the loan contract with an exercise price equal to the loan outstanding. 
A rational exercise policy for the prepayment option would be to exercise 
the call option on the loan contract only when the difference between the 
value of the loan at the prevailing interest rates on any future date and 
the loan amount outstanding exceeds the value of the prepayment option 
on that date assuming a rational exercise policy for the remaining term 
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of the loan. Otherwise the prepayment option should not be exercised 
since it is worth more “alive” than exercised. 

This is equivalent to an American style option to swap the fixed rate 
loan for a floating rate loan for a term equal to the remaining term of 
the original loan. Both the term and the face value, for reducing balance 
loans, of this swap reduce through time. Because of the reducing term 
of the loan this option to swap is not equivalent to a swaption on a 
fixed term swap. For interest only loans it is equivalent to an American 
style option on a physical bond with an original maturity equal to the 
original term of the loan. 

For the loan contract it can be expected that borrowers will not 
follow this rational exercise policy. Some borrowers will prepay when it 
is not economically rational to do so and not all borrowers will prepay 
even when it is economically rational to do so. Such departures from a 
rational exercise policy arise because of market frictions such as trans- 
action costs and also because of the occurrence of events such as death. 
In this paper the term “non-rational” is to indicate a departure from 
the assumed rational behaviour described above. 

The important point with this contract is that this non-rational 
exercise of the option provides positive value to the lender in all circum- 
stances as does not exercising when it is economically rational to do so. 
If the loan can be issued for the full cost of the rational prepayment 
option then the lender need not consider an allowance for the non ratio 
nal early prepayments in the pricing and could then allow profits from 
such prepayments to be recognised as they occur. It would also need 
to recognise profits from non-exercise of the prepayment option when it 
is economically rational to do so. If however the early exercise option, 
including the value of the non rational exercise, is priced into the loan 
contract on a competitive basis then allowance for the rate of non ratio 
nal exercise will need to be made. In these circumstances the important 
point to note is that non rational prepayment is difficult to hedge pre- 
cisely and is also difficult to predict. This is the problem with mortgage 
backed securities where the market prices reflect the prepayment option 
including the non rational prepayment value. 

3.1. VALUATION OF RATIONAL REPAYMENT OPTION 

The algorithm set out here for valuation and analysis of the rational 
prepayment option is based on a technique developed by Jamshidian 
(1991). The algorithm is fast and efficient and allows the valuation of 
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a range of interest rate related options. The basic approach is set out 
in this section with the algorithms and an example is used to illustrate 
the implementation of the algorithms. 

To begin, express the one period spot interest rate at time t, de- 
noted by T(t), as a function of a random variable z(t). The z(t) will 
take on values called “states” at different future times based on a lat- 
tice. The simplest case to use is the binomial lattice and since this has 
accepted usage this will be the basis adopted. Alternative lattice struc- 
tures do have potential computational advantages but this is unlikely to 
be an issue of concern with the algorithm recommended for use in the 
computations in this paper. 

Start at time zero with state s(O,O) equal to 0. Allow the state to 
jump up to +l at time 1 or down to -1 at time 1. These new states 
will be referred to as nodes on the lattice. From each node allow the 
state to increase by 1 or to decrease by 1. 

The algorithm to construct the state lattice is 

s(O,O) = 0 

for t=l,...,n 

s(t, t) = s(t - 1,t - 1) + 1 

forj=O,...,t-1 

i=2j--t 

s(t, i) = s(t - 1, i + 1) - 1 

This state lattice is constructed for the maximum time period to be 
used in the valuation. For example using a monthly time interval will 
require 60 time intervals for a five year loan. A monthly interval should 
be accurate enough for many applications. In general the number of 
intervals should be an input variable. Hence if M is the maximum 
time (in years) for construction of the interest rate lattice and n is the 
number of time intervals into which this period is to be divided then 
each time interval is of length h = n/M years. For 5 years and 60 time 
intervals then the length of each is 5/60 = l/12 of a year or one month. 

The probabilities of an up or down change in the state lattice are 
taken to be 0.5. This is used since it allows the fastest computation of 
values. Under this assumption the expected value of the state at time t 
is zero and the variance of the state is t. 
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As an example of the construction of the lattice consider a twelve 
month loan. 

Table 1 illustrates the lattice to use for such an example. The 
values for t are given by the column number and the indicator i is given 
by the row number. Hence the value for the states at time 9 are given 
in column 10 since the first column represents t equal to 0. The values 
s(9, i) range from 9 to -9 in increments of -2. 

Table 1 - Lattice of States s(t,i) 

0 1 2 3 4 5 6 7 8 9 10 11 12 
-1 0 1 2 3 4 5 6 7 8 9 10 

-2 -1 0 1 2 3 4 5 6 7 8 
-3 -2 -1 0 1 2 3 4 5 6 

-4 -3 -2 -1 0 1 2 3 4 
-5 -4 -3 -2 -1 0 1 2 

-6 -5 -4 -3 -2 -1 0 
-7 -6 -5 -4 -3 -2 

-8 -7 -6 -5 -4 
-9 -8 -7 -6 

-10 -9 -8 
-11 -10 

-12 

The one period spot rates (r(t)) will be assumed to be semi-annual 
compounding p.a. rates. These r(t) are functions of the state s(t,i), 
the assumed one period volatility of spot interest rates and the median 
future spot interest rate. The choice of the function of r(t) determines 
the limiting distribution of future one period spot interest rates. Two 
common alternatives are the normal and the lognormal formulae. Others 
are possible. 

The normal distribution specification is 

?qt, i) = j-(t) + (anr(t)/lOO)s(t, i)dx 

and the lognormal specification is 

r(t,i) = f(t)exp { (o~(t)/lOO)s(t,i)dL} 

where f(t) is the median interest rate, am is the one period spot rate 
volatility in absolute terms, am is the one period spot rate volatility 
in percentage terms, and 1~ is the length of the time interval used. 
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There are advantages and disadvantages in using either of these 
models. There are also other models that can incorporate mean rever- 
sion and other distributions. For the illustrative example the lognormal 
model is used. 

The reasons for using the lognormal model are as follows: 

- it does not allow negative interest rates as is possible under the 
normal model. 

- it allows the yield curve to move in a non-parallel fashion unlike 
the normal model which implies parallel moves. 

- the implied volatility curve for zero coupon bonds derived from the 
resulting spot interest rates has higher volatilities for short term 
bonds than for long term bonds unlike the normal model which has 
approximately constant volatility for different term zero coupons. 
Higher volatility in short term interest rates is an observed empirical 
fact for interest rates. 

- the volatility parameter for the lognormal model is percentage yield 
volatility of the time t maturity one period forward interest rate 
and can be estimated from prices for options on forward interest 
rates. 

Note also that it is yield volatility and not price volatility used in 
the formula. If options data gives price volatility then this must be 
converted into percentage yield volatility to use in the lognormal model. 
If the normal model is used then price volatility must be converted into 
absolute dollar yield volatility. Appendix One give details on how to 
convert from one volatility to another. Volatility can be interpolated 
from a forward rate volatility curve or assumed constant for all periods 
for ease of computation. 

Having selected the formula for ~(1, i) this is then used to derive 
present value factors for the nodes of the lattice to value cash flow. 
These present value factors are one period factors that are applied to 
the average value of the cash flows which occur at the up and down states 
at the end of each period. If ~(t, i) is a p.a. semi-annual compounding 
rate then the present value factor at node (t, i) is 

p(i, i) = [ 1 + T(t, i)/200] (-2h) 

where h is the time interval. 

This formula is readily adapted for other compounding frequencies 
for ~(t, i). 
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The choice of the r(t, i) values must be made so that the value 
(yield) of zero coupon bonds maturing at the end of each time interval 
h when determined using the state lattice and the p(t, i) factors is equal 
to the current market price (yield) of those bonds. In order to do this 
as efficiently as possible it is necessary to determine current prices of 
single dollar cash flows at each node in the lattice. These are referred 
to as “state contingent” prices. 

Denote G(n, j, t, i) as the price at node (n, j) of a security which 
has a cash-flow of 1 at node (t, i) and zero everywhere else. It is only 
necessary to calculate G(O,O, t,i), the current price of 1 paid at node 
(t, i), since such a lattice of numbers can be used to value any cash flows 
by setting out the cash flows at node (t, i) then multiplying these cash 
flows by the prices G(O,O, t, i) and summing the values. 

Take as an input the zero coupon yield curve y(t) for zero coupon 
bonds maturing at the end of each of the time intervals in the lattice. 
This would be monthly out to five years in the example set out in this 
paper. Interpolation is used where necessary. The price of a unit face 
value zero coupon bond maturing at the end of time interval t in the 
lattice with a p.a. semi-annual yield of y(t)% is given by 

P(t) = { 1 + y(t)/200}(-2th) 

The valuation lattice is constructed in an iterative manner starting 
at node (0,O) in the lattice. The input is 

- the state lattice (derived above). 
- the zero coupon yield curve y(t) which is used to determine the 

price of zero coupon bonds P(t) (formula given above). 
- the one period forward rate percentage volatilities for each period 

in the lattice. 

For the example this data is taken as follows: 

1 2 3 4 5 6 7 8 9 10 11 12 
6.65 6.58 6.53 6.5 6.44 6.41 6.39 6.39 6.38 6.4 6.42 6.45 

c7(t) 21 21 21 21 21 21 21 21 21 21 21 21 

These zero coupon bond yields give the following zero coupon bond 
prices for each maturity. 
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1 0.994 0.989 0.984 0.978 0.973 0.968 0.963 0.958 0.953 0.948 0.943 0.938 

The output is 
- the current state contingent prices G(0, 0, t, i) for each node in the 

lattice. 
- the one period discount factors p(t,i) at each node in the lattice. 
- the implied one period spot interest rates at each node in the lattice 

calculated from the p(t, i) factors. This need not be produced 
since it is not meaningful in terms of expected future interest rates 
except in the sense that it represents market expectations on the 
assumption that the lognormal model (or other model used) is the 
correct model for interest rates. These rates are a product of fitting 
the interest rate model to market data in the form of the zero 
coupon yield curve. 

- the median forward interest rates for each period. 
For the example the following G(O,O,m,j) values are produced. 

Values of state contingent securities G(O,O, m, j) 

The values in the table have been derived by selecting the median 
forward rate used in the formula for r(t,i) until the sum of the G(O,O,m,j) 
values equals the price of the zero coupon bond for maturity m. For 
example, if the values in this table for column 4 are summed then a 
total of 0.98925 is obtained which equals the zero coupon bond price for 
maturity 2. The procedure begins at time 0 and works forward using 
forward induction. At each stage of the algorithm the forward discount 
factors are derived. These are set out in the following table for the 12 
month example. 
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Values of p(t, i) 

Corresponding to each p(t, i) value is a corresponding one period 
interest rate. These have been determined for the example and expressed 
as semi-annual compounding rates in the following table. 

One period spot rates % p.a. semi-annual compounding 

The median future spot rates are solved to produce the market 
price of the zero coupon bonds. The median rates for the example are 
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as follows. 

One period spot rates % p.a. semi-annual compounding 

The algorithm for determining these is as follows. Begin by initial- 
king the time 0 values. 

G(O,O, 0,O) = 1 
P(O,O) = P(1) 

Carry out the following for each successive value of t = 1 to n - 1: 

- begin with date t 
- estimate the median interest rate using the previous period’s rate 

f(t) = f(t - 1) 
- calculate the time t, state t spot rate 

r(t,t) = f(t)exp { (a,(t)/lOO)s(t,t)JII} 

- calculate the discount factor corresponding to r(t, t) 

p(t, t) = [l + r(t, t)/200](-2h) 

- calculate the state contingent value of 1 at time t using the forward 
relationship 

G(O,O, t, t) = 0.5&t - 1, t - l)G(O, 0, t - 1, t - 1) 

- calculate the contribution to the next period zero coupon bond 
price implied by the discount factor and state contingent price 

P* (t + 1) = G(O, 0, t, t)p(t, t) 

- repeat this for all possible values of the state for each time period 
summing the contribution to the next period zero coupon bond 
price from the calculated discount factor and state contingent price 
derived from the forward relationship for state contingent prices 
forj=l,...,t-1 
i=t-2j 
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r(t, i) = f(t) exp { (a~(t)/lOO)s(t, i)Jil} 

p(t, i) = [l + r(t, i)/200](-2h) 

G(O,O,t, ZJ =O+(t - l,i - l)G(O,O,t - 1, i - l)t 

tpjt-l,i(l)G(O,O,t-l,i+l)} 

P*(t + 1) = P*(t + 1) +G(O,O,t,i)p(t,i) 

- finally, complete the process for state -t 

G(O,O, t, -1) = 0.5&t - 1, -t + l)G(O,O, t - 1, -t + 1) 

r(t, -t) = f(t) exp { (dL(t)/lOO)s(t, -t)dL} 

p(t, -t) = [l + T(t, -t)/200](-2h) 

P*(t + 1) = P*(t + 1) + G(O,O, t, -t)p(t, -t) 

Now check to see if P*(t + 1) is within 10e6 of P(t + 1) from the 
zero coupon yield curve given by 

P(t + 1) = { 1 + y(t + I)/200}(-2{f+1? 

If not alter f(t) using either the secant method or Newton-Raphson and 
repeat. Once P*(t + 1) has converged to P(t + 1) proceed to the next 
value of t. Convergence should take only two iterations at most. 

At the end of this procedure the values of p(t, i) and G(O,O, t, i) for 
all values of t,i in the lattice will have been derived. These values are 
all that are required to value the rational prepayment option. 

The steps involved in the valuation are to firstly determine the 
current values of the loan repayments at each node of the lattice. To do 
this the contractual loan cash flows are set out in a lattice. Denote the 
loan cash flow at node t,i in the lattice as c(t, i). The value of the loan 
is derived by stepping back recursively through the lattice. Denote the 
value of the loan at node t, i as v(t, i). The loan values are determined 
using the following algorithm. 
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Initialise 
for j = 0 to n 

i=2j--n 

2r(n, i) = 0 

calculate each value of v(t, i) recursively using 
for t = n - 1 to 0 

j=otot 

i=2j-n 

This gives the lattice of loan values. 

The example will use a 12 month interest only fixed rate loan 
with an interest rate of 6.449% p.a. (semi-annual compounding) for an 
amount of 10,000. Monthly interest repayments for such a loan will be 
53.036 with repayment of the 10,000 in a bullet payment in 12 months. 
The loan rate of 6.449% p.a. (semi-annual) was chosen since this is the 
“arbitrage-free” interest rate for such a loan based on the one factor 
term structure model used in this example. Hence the value of such a 
loan using the algorithm set out above is 10,000. The loan cash flows 
and the state contingent values of the loan are set out in the following 
tables. 

Loan cash flow lattice c(i,j) 
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Value of loan cash flows v(t,i) 

The values of the loan cash flows have been derived by averaging the 
next periods loan values plus the loan cash flows for the two states that 
originate from the node and multiplying this by the one period discount 
factor for that node. 

The next step is to generate a lattice of balances outstanding un- 
der the original loan yield rate. These are the exercise prices of the 
prepayment option and will be denoted by b(t, i). Note that these do 
not vary for differing values of i since the loan outstanding which is to 
be prepaid is based on the value of the repayments at the original loan 
interest rate. 

Loan outstanding lattice b(t, i) 

The cash flow on rational early prepayment is the difference between 
the value of the loan and the balance outstanding provided that this is 
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positive. These values are denoted by o(t, i) and they are determined as 
follows. 

For all t and i 

o(t, i) = maximum (w(t, i) - qt, i), 0) . 

These values for the example are set out in the following table. 

Early exercise cash flows o(t, i) 

Notice that for lower future spot interest rates the prepayment 
option is more “in the money”. Because the prepayment option is 
assumed to be exercisable at any time this table does not give the state 
contingent values of the prepayment option. At each node it is necessary 
to check if the prepayment option is worth more if left unexercised and 
a rational exercise policy followed for the remaining term of the loan. 

The value of the rational early prepayment option is determined by 
stepping back through the rational early prepayment cash flow lattice 
allowing for the possibility that the value of the prepayment option at 
any time point is worth more than the value that would be received by 
prepaying at that time. To do this denote the rational early prepayment 
option value by ov(t, i). The required value is ow(O,O). The following 
algorithm is then used to determine ov(t,i). 
Initialise 
for j = 0 to 72 

i=2j-n 

o?J(n, i) = 0 
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Calculate the option value recursively 
for t = n - 1 to 0 

j=otot 

i=2j--n 

ow(t, i) = 0.5 ow(t + 1, i + 1) + ow(t + 1, i - 1) p(t, i) 
{ > 

if o(t, i) is greater than ov(t, i) then set ov(t, i) = o(t, i). 

Prepayment option values ov(t, i) 

Note that whenever o(t, i) exceeds ov(t,i) then it is optimal to 
exercise the early prepayment option in full and repay the whole loan. 
Otherwise the option value is greater if kept alive. The rational exercise 
of the option involves 100% exercise whenever it is optimal to do so. 

For the example the prepayment option value equals 26.422 per 
10,000 face value for the interest only loan. 

3.2. VALUING THE NON-RATIONAL EXERCISE (AND NON-EXERCISE) OF 
THE PREPAYMENT OPTION 

Non-rational exercise of the option can be incorporated into the 
calculations. This is done most easily by assuming a rate of prepayment 
as a proportion of the loan outstanding at each time period which is 
independent of the current interest rate. These rates will be denoted by 
q(t). These prepayment proportions are used to determine the altered 
principal repayment cash flows. The altered balance outstanding on 
the loan is determined allowing for the early prepayment proportions. 
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This is used to establish the altered interest payments at the original 
loan interest rate. The sum of the principal repayments and interest 
repayments allowing for previous early prepayments is the altered loan 
cash flows c(t, i). 

The value of the loan at each node of the lattice is determined 
in the same way as before using the altered loan cash Bows. The 
balance outstanding of the loan is determined either by valuing the 
altered outstanding repayments at the original loan interest rate or by 
determining a survivorship proportion of the principal outstanding using 
the rates of prepayment q(t). 

The early prepayment option value can be determined using the 
lattice approach by assuming that the remaining principal outstanding 
at the nodes where it is optimal to exercise the prepayment option 
is repaid in full. The lattice approach as covered will also require an 
assumption of path independence of the non-rational prepayments. Such 
a calculation will incorporate the value of exercise of the option when it is 
not economically rational to do so assuming that the rate of prepayment 
is not dependent on interest rates. It does not allow for the value of the 
non-exercise of the option when it is economically rational to do so. 

If an allowance for non rational exercise is to be incorporated into 
the pricing of the loan then estimates of the prepayment rates will be 
required. 

The US experience is a guide. The experience in the mortgage 
backed security market is referred to in Bartlett (1989). This reference 
indicates that prepayment rates vary with the original loan interest rate 
with higher original interest rate loans having higher prepayment rates. 
An increase of 4% in the original interest rate can mean a four times 
higher prepayment rate. A standard that is used in the US market 
has prepayment rates commencing at 0% in month 0 and increasing by 
0.2% monthly to 6% in month 30 and a constant 6% thereafter. There is 
also a lag in the time period from when interest rates increase to when 
loans prepay early of around three months. Prepayments are seasonal 
reflecting the timing of house sales which are higher in summer and 
spring than in winter. Loans are not very sensitive to prepayment when 
rates rise during the first 2.5 years of loan issue. 

If prepayments are to be incorporated this suggests that the pre- 
payment rate should vary by 

- the original loan interest rate 
- time since the loan was issued 
- the interest rate three months previously 
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- the month of the year (seasonal) 
and accurate estimation of such rates will be important since they will 
not be possible to hedge directly. 

If such an allowance for prepayment,s were to be made then the value 
of the loan outstanding and the balance outstanding become dependent 
on the interest rate path through the valuation lattice and the option 
valuation becomes path-dependent. This is a computationally more 
intensive valuation than the non-path dependent case outlined so far. 
The conceptual requirements are however the same but the state lattice 
at each time point will require a separate node for each distinct path 
through the lattice. In this case a down movement followed by an up 
movement in the state lattice is different to an up movement followed 
by a down movement. 

The path independent state lattice has n+l states at the maturity 
date of the loan where there are n periods in the lattice. For a monthly 
time interval and a maximum term of 5 years produces 61 state nodes 
at the maturity date. The path dependent state lattice will have 2” 
state nodes at maturity since the states will double over each time 
interval in the lattice resulting in 261 ultimate states. This presents a 
computational problem. The way around this is to use simulation to 
value the option. 

The simulation approach would proceed as follows. The loan yield 
rate could be modelled as a normal or lognormal random variable. Mean- 
reversion could readily be incorporated. To do this generate standard 
normal random variables one for each period for the number of simu- 
lations to be performed. If 100 simulations are to be carried out then 
using monthly intervals over a five year period will require 5900 stan- 
dard normal random variables. The number of simulations required for 
accuracy would be determined by valuing options for which the value 
was known, such as traded bond options or swaptions, and checking 
how close the simulated value was to the accurate value. The number 
of simulations required for any given accuracy could be reduced using 
Monte-Carlo techniques such as control-variate techniques. 

It is convenient to assume a flat yield curve in the simulation cal- 
culations. It would be possible to simulate values for one period forward 
rates for all the maturities of the yield curve required in the calcula- 
tions. This would require a much higher number of simulated values 
and a longer computation time. 

Generate the interest rates using the following formulae. The cur- 
rent interest rate level will be r(0) determined from fitting the model 
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parameters to the current yield curve and other market data. Generate 
the interest rate level at the end of each of the required months using 

Normal distribution: 

r(t) = T(t - 1) + alv&$j 

where e(t) is normal (0,l) random number, h is the time interval in 
years (for monthly values this is dm = .288675) and ON is the 
annual volatility of the one period interest rate in absolute terms. 
Log-normal distribution: 

r(t) = r(t - l)(l + UL&@) 

where 01, is the percentage volatility of the interest rate so that 

‘TN = T(t) x (TL . 

Mean-reversion: 

T(t) = r(t - 1) + Ic(p - f(t - 1)) + a~Jhr(t - l)e(t) 

where p is the long term mean interest rate, and k is the speed with 
which the current interest rate tends to move to the long-term interest 
rate. 

For each month generate the market interest rate r(t). Determine 
the proportion of the principal outstanding to be repaid q(t,r(t)). It 
should consist of 

- a monthly proportion varying with the time since issue of the loan 
and the month of the year (to allow for seasonal effects), and 

- a proportion varying with the difference between the current rate 
r(t) and the original loan rate. 

Value the contractual repayments, reduced by the proportion of the 
loan repaid, at the market interest rate r(t) to obtain the value of the 
loan v(t). Value the outstanding contractual repayments at the original 
loan interest rate y to get the balance outstanding b(t). Determine the 
cash flow from the early prepayment option (could be a cost or benefit) 
by multiplying the proportion repaying by the difference between the 
value of the loan v(t) and the loan outstanding b(t). Denote this by o(t) 
so that o(t) = q(t,r(t)){w(t) - b(t)}. 
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Determine the new principal outstanding by reducing for contrac- 
tual repayments of principal and the proportion who early repay. De 
termine the reduced contractual repayments. 

Continue for each month to the maturity month of the loan. 

Present value the early prepayment option cash flows o(t) using the 
r(t) rates generated for each of the months. If r(t) is a semi-annual 
compounding rate then the procedure would obtain the value ov(0) for 
this simulation as follows: 

Initialise OTJ(~) = 0 
for i = n - 1 to 0 

077(i) = o(i)+ ov(i - l)*(l +r(i - 1)/200)(-2/'2) 

Repeat this procedure for the desired number of simulations. To 
determine the prepayment option cost simply calculate the average of the 
simulated option values ov(0) determined from each of the simulations. 

The same random numbers would be used for loans of different 
terms to produce consistent values. The random numbers for the term 
of the loan would be selected from the appropriate random number 
paths. 

Models which allow for prepayments for mortgage backed securities 
have been set out in a number of studies. Examples of US studies in- 
clude Green and Shoven (1986) and Eduardo S. Schwartz and Walter N. 
Torous (1989). Prepayment models used in practice are often considered 
to be proprietary even though the basic form of such models is standard. 

The basic form of these models allow for the following components: 

(a) a proportion of loan amounts outstanding being prepaid which 
varies through time and is assumed to be independent of interest rates. 
This proportion is assumed to increase to a maximum and then remain 
constant or decline slowly; 

(b) an increase in this proportion whenever the difference between 
the original loan rate and an indicator of market interest rates increases 
above a threshold margin. This threshold margin reflects refinancing 
costs; 

(c) a reduction in the proportion to the time dependent (non- 
interest sensitive) prepayment proportions whenever the difference be- 
tween the original loan rate and an indicator of market interest rates 
exceeds a “burnout” level beyond which it is assumed that all interest 
sensitive loans will have prepaid. 
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The indicator of market interest rates is usually taken as the current 
fixed interest refinancing rate for a similar loan or a previous value of 
such a market rate such as the minimum rate since issue of the loan or 
the rate three months previously. Another alternative is an average of 
several previous months market interest rates. 

The usual form of these prepayment models can be written as 
follows: 

where q(t) is the interest rate independent prepayment proportion which 
depends only on the time since issue of the loan and k(r) is a function of 
the market interest rates which gives the proportionate increase in q(t) 
resulting from the financial incentive to refinance for those borrowers 
who are considered to be interest sensitive. 

There are a multitude of formulae that can be used for q(t) and /C(T) 
and the aim should be to select a formula that is capable of modelling 
a range of possibilities and which depends on as few parameters as 
possible. 

All of these prepayment models apply to a pool of loans so that 
they are considered to be the average percentages of loans which prepay 
as a percentage of the balance outstanding for a large group of similar 
loans which were issued at the same time and for the same fixed interest 
rate. They do not apply directly to a single loan since in most cases a 
single loan will either fully prepay or will continue with the contractual 
payments. Pricing and hedging of such contracts will be dependent on a 
large enough volume of similar loans being issued so that the prepayment 
functions can be considered as expected values. For smaller volumes of 
similar loans the prepayment percentages will vary from the model and 
it is important to analyse the sensitivity of any pricing or hedging to 
the prepayment model in the light of the expected statistical variation 
in such prepayment rates. 

The form of the prepayment model should ideally be estimated 
from available data. It will be important to examine the sensitivity of 
any pricing to the prepayment assumption before adopting a particular 
model. The following formula captures a range of prepayment patterns. 
Use q(t, r) = q(t)k(r) with 

q(t) = (gP)w’P-l’lu + @)*I 

where g and p are parameters and t is the number of months since issue 
of the loan ( t = 0, 1, . . . ,59 for a 5 year loan). 
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Parameters of g = 0.008 and p = 1.3 give q(t) proportions similar to 
those of the PSA standard for USA mortgage backed securities. Values 
of g = 0.013 and p = 1.9 give proportions approximately twice those of 
the PSA standard. The q(t) proportions can be calculated as multiples 
of the PSA standard by following these two steps: 

(i) convert them to annual equivalents using the formula 

cpw = { 1 - [l - q’(t)] I,> 
and 

(ii) multiply by 
500/t for t < 30 
or 16.67 for t 2 30. 

The prepayment proportions should be examined visually in a graph 
of q(t) versus time to compare one set of assumptions against another. 

The form of lc(r) can be specified in many ways. The following is 
one possible approach. Other specifications of k(r) are possible. 

Define the following inputs: 

(i) u(t) as the moving average of the market refinancing fixed rates 
r(t) generated using the simulation model for the previous z months. 
Select II: equal to six months in order to approximate the three month 
lag typically found in studies of interest rate sensitivity of prepayments. 
For the first six months u(t) will be the average of all of the monthly 
rates available until a period of six months has passed. 

(ii) ~1 as the threshold point equal to the difference required between 
the original loan rate y and the average of market rates at time t, u(t), 
in order for prepayments to be influenced by falling interest rates. 

(iii) rh as the burnout point equal to the difference required between 
the original loan rate and the six month average of market rates at 
which point all interest sensitive prepayments will be assumed to have 
occurred. 

(iv) b = ln( 1 + lc/lOO) w h ere In is the natural logarithm and k is the 
maximum percentage increase in the prepayment proportion assumed to 
occur at the burnout point. 

Calculate k(r) as follows: 

if the original loan rate minus the moving average market rate at 
time t is greater than the threshold point and less than the burnout 
point (i.e. rl < {y - u(t)} < Q,), and if the current moving average 
market rate is lower than the minimum of all of its previous values (i.e. 
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a(t) > minimum {a(i),i < t}) then 

k(r) = exp [b{ (Y - CL(t))Irh}] 

otherwise 

k(r) = 1. 

Suitable values for the input parameters need to be determined based 
on any repayment experience available. It would also be possible to 
model a slowing down of the rate of prepayments whenever prepayments 
over the life of the loans issued at a particular time have been higher 
than expected. To do this the prepayment proportion q(r, t) would be 
multiplied by the factor 

f(r, t) = exp ( - c{ ln(o~(WW~) 

where oh(t) is the actual outstanding balance outstanding on the loans 
issued and d(t) is the scheduled balance outstanding. This factor is 
included in some of the US studies of mortgage backed securities. 

The simplest procedure for determining the parameters is to select 
the values of g,p, b, ~1, rh which fit the available or expected loan ex- 
perience data “best”. This loan experience could be based on forecast 
experience or on historical data. The historical data required would be 

- the month of issue 
- the fixed interest rate 
- the actual balances outstanding for each month since issue 
- the contractual balances outstanding had the loan followed the con- 

tractual repayment pattern for each month since issue 
- the market interest rate for each month since issue. 

The best fit could be determined using a number of techniques of 
which least sqiares would be the most straightforward. US studies have 
used other statistical techniques such as maximum likelihood. 

If this data is readily available and it appears that the prepay- 
ment assumption has a significant financial effect on the costing then it 
would be advisable to analyse any available data. This would be most 
useful for estimating the q(t) proportions rather than the sensitivity of 
prepayments to interest rates given by k(r). 
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4. RISK STATISTICS 

As with any portfolio of interest sensitive financial contracts it is 
useful for the management of the portfolio to determine the sensitivities 
of the portfolio value to the underlying factors on which the value is 
based. For options these sensitivities, or risk statistics, are the delta, 
gamma and theta. Since this loan contract is an interest rate related 
instrument it is also useful to evaluate interest rate related risk statistics 
such as duration and convexity. 

The prepayment option is an American style option and to evaluate 
risk statistics it is necessary to use a numerical technique. The algo 
rithms for determining the risk statistics for the rational prepayment 
option and the risk statistics for the prepayment option incorporating 
the non-rational exercise and non-exercise of the prepayment option are 
set out here. The underlying asset is taken to be the loan. 

4.1. OPTION DELTA 

For the rational prepayment option calculate the delta using the 
following lattice values: 

approximate delta = ov(2,2) - 042,1)/(~(2,2) - v(2,O)) . 

For the non-rational simulation option value: 

approximate delta = ov*(O) - ov(O)/{v* - V} 

where v* = ~(1.0001) is the current value of the loan v increased by 
.Ol% and ov* is the option value using the identical random numbers 
e(t) for ov but with a starting market interest rate r*(O) determined by 
equating the value of the outstanding contractual loan prepayments to 
Zt*. 

4.2. OPTION GAMMA 

For the rational prepayment option use the lattice values: 

approximate gamma = 
[{ 42,2) - 42,0)/(7J(2,2) - 74% O))}+ 

- (42,O) - 42, -2)l(vcz 0) - 42, -2,,>] lh 
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where h = {v(2,2) - ~(2, -2)}/2. 
For the non-rational simulation option value: 

approximate gamma = {m*(O) - 2ov(O) + ov**(O)}/{w* - v}’ 

where ov* and v* are as for the option delta and v** = 0.9999v so that 
ov** is the option value corresponding to a starting market interest rate 
which equates the outstanding contractual loan repayments, adjusted for 
any previous early proportion of prepayments, to v** using the same set 
of random numbers used to calculate the option value. 

4.3. OPTION THETA 

For the rational prepayment option use the lattice values: 

approximate theta = (ov(2,O) - ov(O,0)}/2h 

where h = l/12. 

For the non-rational simulation option: 

approximate theta = {m*(l) - m(O)}/h 

where ow*( 1) is the value of the option at the end of the following 
month when the loan term will be reduced by one month and allowance 
is made for the contractual repayments due over the next month. The 
same random numbers are used in the calculations as when calculating 
40). 

4.4. OPTION VEGA 

For the rational prepayment option it wi,ll be necessary to relate 
the option sensitivity to the spot rate volatility which is an input in the 
calculations. It is not possible to derive the option vega from the lattice 
values and it must be approximated by recalculation of the option value 
for a small change in the input volatilities. The same approximation 
can be used in the simulation calculations. 

approximate vega = ov(al.01) - ov(O)/(o.Ol) 

where ~(~1.01) is the option value calculated using a volatility of 1.01 
times the volatility used to derive the option value W(O). 
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4.5. OPTION DURATION 

Option deltas given above measure the sensitivity of the option 
value to changes in the value of the underlying loan. They can be in- 
terpreted as hedge ratios if the option is to be replicated using loan 
instruments with the same cash flow and value characteristics. Hedging 
could also be considered using financial instruments with different cash 
flow characteristics to the loan but with similar sensitivity to general 
levels of interest rates. The option duration is a measure of the sensitiv- 
ity of the change in the value of the option to changes in interest rates 
used to determine the value of the loan. 

The loan option duration can be estimated using the formula 

prepayment option duration = D delta {v(O,O)/ow(O, 0)) 

where D is the modified duration of the outstanding loan repayments. 

It can also be approximated using the formula 

{ow(?-+) - 021}/(0.0001*ow) 

where ov(r+) is the option value calculated for a 1 basis point increase 
in the interest rates input into the option calculations. 

4.6. OPTION CONVEXITY 

The prepayment option convexity can also be approximated numer- 
ically by recalculating the option value for a 1 basis point decrease in 
interest rates as well as a 1 basis point increase and using the approxi- 
mate formula 

{OW(T+) - 2ov + ow(7--)}/{ (0.0001)20V} 

5. HEDGING 

The ideal hedge instrument for the prepayment option is effectively 
an American style call option on an amortising reducing term swap. Any 
alternative hedging strategies will involve either over-hedging or under- 
hedging. The amortisation of the swap would need to correspond to 
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the prepayment pattern of the loan. In the case of interest only loans 
the ideal hedge for the prepayment option would be an American style 
physical bond option for the term of the loan. 

The ideal hedge instrument might not exist and so it is necessary 
to consider alternate ways of hedging the option. The actual hedging 
instruments can also be used to price the option since the market price 
of the hedge instruments which perfectly hedge the option will be the 
cost of the prepayment option. 

In order to evaluate alternative hedging methods it is necessary 
to consider the pricing basis as well. If the prepayment option is to 
be priced on a rational exercise basis and this is the price charged to 
the borrower then the rational option cash flows determined using the 
lattice approach are the appropriate basis for determining the required 
hedging. If the non-rational value of the option is to be estimated and 
charged then it will be necessary to attempt to hedge the expected cash 
flows based on assumed exercise proportions and the accuracy of the 
hedge will depend on the accuracy of the estimate of the proportions 
prepaying. Some assessment of the basis risk of any hedging strategy 
will also need to be made. 

A simple approach to hedging the prepayment option would be to 
use an immunisation or dynamic hedging approach. Hedge instruments 
would be chosen to match the prepayment option duration and convex- 
ity. Each month the portfolio of hedge instruments would be rebalanced 
to match the altered duration and convexity of the prepayment option. 
This strategy would have a high level of basis risk since it would rely on 
the accuracy of the estimates of interest rate sensitivity (in the form of 
duration and convexity) of the hedge instruments and the prepayment 
option. In theory any interest sensitive hedge instrument for which an 
estimate of the duration and convexity could be calculated could be 
used. This would include bond options, swaptions, caps and floors. The 
selection of hedge instrument would be based on liquidity and depth 
of the market for the instrument, transactions costs and other market 
related factors. 

A better approach would be to attempt to match the cash flows of 
the prepayment option more exactly. Although the prepayment option is 
American style, most over the counter interest rate options are European 
style. A portfolio of European style options will not provide a good 
match to the prepayment option cash flows unless it is possible to sell 
the European options when it is optimal to exercise early. Even so the 
sale of the European style options will be for less than the payoff on 
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early exercise of the prepayment option since American style options 
will usually have higher values than European options. 

Even when American style options are available these are not usu- 
ally on an underlying instrument which is equivalent to the loan. Using 
American style options will involve constructing a portfolio of options on 
different underlying instruments. Such a portfolio of options is unlikely 
to exactly replicate the prepayment option since it will not recognise 
the interdependencies of the underlying instruments that is needed when 
they are put together to form the loan cash flows. Purchasing a portfolio 
of options will involve paying too much for the hedge. 

6. CONCLUSIONS 

This paper has set out the computational algorithms required to 
value and analyse the prepayment risk of certain loan contracts. It has 
used a simple example to illustrate the techniques. The computational 
algorithms have been presented in a form that can be readily imple- 
mented rather than in the mathematical form that these term structure 
models are usually presented. 

These models are relatively easy to implement, as is hopefully 
demonstrated in this paper, and should be used to assess interest rate 
related options in assets and liabilities. 

7. APPENDIX ONE 
Price and Yield Volatility 

Let P(r) be the price of security at yield 1‘. The current values of 
P and r are known. The absolute volatility of P and r will be denoted 
by CT(P) and o(r) respectively. The percentage volatility of P and I‘ are 
simply a(P)/P and a(r)/r. The relationship between price and yield 
volatility can be approximated by using Ito’s Lemma and assuming a 
diffusion process for both P and r. In this case 

dP = u(P)dt + a(P)dZ 

and 

dr = u(r)dt + a(r)dZ 

and since P = P(r) then 

dP = { Pru(r) + 1/2P,.,a2(r)}dt + P,cT(r)dZ 
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where P,. denotes the partial derivative of the price with respect to the 
interest rate. 

It then follows that 

a(P) = P&(7‘) 

and since the modified duration of a security is defined as -P,./P this 
gives 

o(P) = PDa(r) 

where D is the modified duration of the security. 
Hence 
absolute price volatility = price x modified duration x absolute yield 
volatility. 

We also have 

o(P)/P = D{a(r)/r}r 

or 
percentage price volatility = modified duration x percentage yield vola- 
tility x yield 
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