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Abstract 

The traditional definitions of duration and M2 for a certain cash flow are 
extended to cover contingent cash flows, such as life insurance and annuity 
products. Essentially, we define a kind of “expected duration” and “expected 
M”‘, where the expectation is taken with respect to the (probability) measure 
of the contingent cash flow. As examples, we derive the duration and Mr 
for some common life insurance and annuity cash flows in terms of classical 
actuarial symbols. We discuss some properties of expected duration and Ma 
and relate them to the traditional duration and MZ definitions. Numerical 
examples are given. 
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R&urn6 

Les definitions classiques de la duree et de la masse monetaire au sens de n/r? 
pour un certain cash flow sont dlargies pour couvrir les cash flows 
conditionnels, tels que les assurances sur la vie et les rentes. Nous definissons 
essentiellement une sorte de t( duree anticipee 1) et de (c la masse monetaire 
anticipee au sens de A@ )), dans lesquels I/anticipation est consideree par 
rapport a la mesure (de probabilite) du cash flow conditionnel. Nous en 
derivons, sous forme d’exemples, la duree et la masse monetaire au sens de 
A.@ pour certains cash flows derives d’assurances sur la vie et de rentes 
communement offertes en termes de symboles actuariels classiques. Nous 
traitons de certaines proprietes de duree et de la masse monetaire au sens de 
A# anticipees et les comparons aux definitions classiques de duree et de la 
masse monetaire au sens de A#. Des exemples numeriques sont donnes. 

Mots-cl& : duke, masse monetaire au sens de /Mz, immunisation, assurance sur 
la vie, rentes. 
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1 Introduction 

In the past few years, a whole investment consulting business has grown up around 
immunization concepts. The main reason underlying the boom of this line of busi- 
ness is the increasing fluctuation of interest rates in financial markets. When inter- 
est rate changes, any financial institution or pension fund incurs a risk called “bal- 
ance sheet risk” if its assets have different sensitivity to the change of interest rate 
than its liabilities. However, there exist difficulties with the application of classical 
immunization concepts to the insurance and pension fund management industries. 
Most immunization strategies are based on some immunization measures, such as 
duration, M2 and convexity. These concepts are usually defined for certain cash 
flows [l, 2, 3, 5, 10, 12, 13, 16, 19, 20, 251. F ew insurance and pension liabilities are 
characterized by any certain cash flows [21]. 

In this paper, we show that the traditional definition of duration and M2 can be 
extended to cover contingent cash flows, where the time of payment depends upon 
the occurrence or non-occurrence of a certain event or a state of the nature. Most 
life insurance and annuity products fall into this category of cash flows since the 
cash flows provided by these products depend on the event of “death” or “survival”. 
Essentially, we define a kind of L‘expected duration” and “expected M2” where the 
expectation is taken with respect to the survivorship distribution. We also give some 
concise formulas for the expected duration and M2 for some common life insurance 
and annuity products by using actuarial symbols. Mathematical results show that 
these duration and M2 statistics can be used as immunization measures. However, 
we have to emphasize here that this result is only correct in the sense of a “mean” 
(or average) since we average out the effect of mortality by taking expectations. The 
immunization measures vary with the nature of the assumed changes in future interest 
rates. We calculate the immunization measures for life contingencies under different 
stochastic models of the term structure of interest rates. 

The rest of the paper is arranged as follows: Section 2 sets the stage of our studies 
by reviewing the traditional definitions of duration and M2 for certain cash flows and 
their properties when the yield curve is flat and when it is subject to parallel shift. 
The extension of duration and M2 for contingent cash flows is given in Section 3. 
Mathematical results in Section 4 show that these duration and M2 statistics can be 
used as immunization measures. Section 5 discusses the immunization measures for 
life contingencies under different stochastic models of the term structures of interest 
rates. We incorporate the following three models for interest rates into the calculation 
of immunization measures for life contingencies: 

1. The AR(l) process as in Panjer and Bellhouse [I4, 151; 

2. The Vasicek model [22]; and 

3. The Cox, Ingersoll and Ross model [8]. 
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Section 6 gives some numerical examples of the immunization measures of life contin- 
gencies under both deterministic and stochastic models of term structure of interest 
rates. The last section discusses some practical aspects when the extended notions of 
duration and M2 are used. 

2 Duration and M2 for Certain Cash Flows 

Any financial assets and liabilities can be characterized as streams of cash flow. For 
example, a bond confers on its owners a finite stream of coupon payments and a 
principal repayment. An n year term insurance provides a $1 benefit at death if the 
insured dies within n years. The cash flow can be certain or more generally contingent 
upon the occurrence of some events. For a certain cash flow, we mean that both its 
amount and time of payment are predetermined, such as in the case of bonds and 
mortgages(if we ignore the default and prepayment risk). When either the amount 
or the time of payment, or both, are not certain, it is called a contingent cash flow. 

Consider a certain cash flow bi, b2, . . ., b,, due at the times ti, t2, . . . . t, respectively, 
where the amounts b; and the times t; are predetermined. Suppose that J(t) is the 
current(at time zero) forward rate at time t, 0 5 t 5 00. The current value of the 
cash flow can be written as 

where dti = e- Xi QrJd’ is the discount function. 
For this cash flow, the duration can be defined as 

(1) 

i=l 

where wi = 9 and Cy=r wi = 1. From this definition, we can obviously define the 
duration as the weighted average of the time periods in which the cash flows occur, 
where the weights, w;, are the present values of the cash payments relative to the 
present price of the income stream. If the current forward rate S(s) is a constant b 
(the yield curve is flat), and the change of the yield curve is parallel, then duration 
D can also be defined as 

D = -f$. (3) 

Hence, duration is a measure of price elasticity with respect to instantaneous rate of 
interest [ll]. 
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These two definitions are equivalent when 6(t) is a constant 6. For a constant 
interest rate and non-negative cash flows, some properties of duration D can be sum- 
marized as follows [3]: 

1. The duration of the cash flow is equal to n if and only if the cash flow is a single 
payment at time n; 

2. The duration of the cash flow is bounded between zero and the time to maturity; 

3. The duration of the cash flow is inversely related to its yield to maturity; 

4. The duration of the portfolio of m cash flows is equal to the weighted average of 
durations of individual cash flow, the weights being the proportions of money 
invested on each security. 

A measure, M2, of dispersion of cash flow dates, is usually defined as 

M2 = -&t; - Dj2w; = 2 t fwi - D2. (4) 
i=l i=l 

This measure is closely related to convexity. We choose to use M2 as a convenient 
second order measure since it is analogous to the concept of variance in statistics 
using the weights as probabilities. 

3 Duration and M2 for Contingent Cash Flows 

We have summarized several definitions of duration for a general certain cash flow 
in the last section. These definitions are valid only for certain cash flow; i.e., the 
amount and the time of each payment are known. However, often the occurrence 
and the size of financial payments are uncertain. For example, most insurance and 
annuity products provide contingent payments based on the random event of death 
or survival. In this section, we extend the previous definitions to cover contingent 
payments where the time of payment depends on a random factor, but where the 
amount of payment is predetermined if the random event occurs. Most life insurance 
and annuity products fall into this category of cash flows. 

We adopt closely the notation used in Actuatial Mathematics (AM) [4]. Actually, 
chapter 4 of AM gives a general valuation model for these kinds of cash flows. As 
stated by the authors: 

In fact, the general model is useful in any situation where the size and 
time of a financial impact can be expressed solely in terms of the time of 
the random event. * 

‘See Actuarial Mathematics, p. 85. 
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Suppose a cash payment, b 1 0, occurs at a random time T, which has a density 
function g(t). The present value of the payment, b,, is ZT = b&, which is also a 
random variable since both by and dT depend on the random variable T. If we know 
the payment function b,, discount function dt, and the density function g(t), we can 
calculate the expectation of the present value of the payment simply as 

P = E(ZT) = E(bdT) = /,= ztg(t)dt = /,= btdtg(t)dt. 

We can define the duration for this uncertain cash flow as the expected mean time 
of payment as follows: 

= Jo=’ w(W 
Jo- w(W 
= E(%T) (6) 

where wt = p. a Obviously, J,” wtdt = 1. 
For constant interest rates, the duration can also be defined as D = -sg = 

-9% as in the last section. 
If the yield curve is flat, the discount function becomes dt = (1 + ;)-” = ut. The 

present value P can be written as 

P = E(zT) = E(bdT) = iW(l t i)-t&g(t)dt. 

If we take the derivative of P with respect to i, we have 

dP -=- 
di J 0 

a0 tbt(l + i)-‘-‘g(t)dt = 2 /om tbtv’g(t)dt 

By the price sensitivity definition of duration, D = - $$s, D can be written as 

D = J,” Ws(t)dt 

P 
= J,” WW 

Jo00 w(t)dt * 
Comparing this equation with the defining equation (6), we can see that they are 
exactly the same. Hence, we can also use equation 

D=-ltidP -- 
P di (7) 

as an alternative definition of duration for contingent payments if interest rates are 
constant. 
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Obviously, the expected duration defined by (7) also has the properties listed in 
Section 1. 

Similarly, M2 can be defined by a variance term as 

M2 = E[(Z’- D)2w~] 

= E(T2w~) - D2. 

When interest rates are constant, we can also show that 

d2P 
W2d = (1 +iJlp di2 -- D. 

By substituting equation (9) into equation (8), we have 

2 

M2 = (1 +;)2pg - D - D2. 

(8) 

(9) 

(10) 

The duration Dur(.) of a few life insurance and annuity cash flows can be obtained 
as follows in an obvious actuarial notation [23, 171: 

Dur(&,) = 

Our(&) = 

Dw(A,:+) = 

DuT(ZI,:~,) = 

= 

Du7$$4*) = 

DuT(T~,) = 

DuT&:~,) = 

Dur(,,EJ = 

= 

m>, 
sr, 
n 

($)D (x1,-) + (%)D 
A,:iSI UT- +.7X( Az:Ti( UT- 

(A 
=+ 

) 

(ET), - (h),:,, 
4 = a 

n + DuT(z,+,). 

These results can be obtained by using equation (7). 
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The dispersion of cash flow dates, M2, can be calculated from 
(10). For example, for whole life insurance, M2 can be expressed as 

M2(7j 
2 

_ ((~,.)2 

A,’ 

equation (8) or 

(11) 

We cannot use actuarial symbols to express the numerator in the first item of the 
right hand of the above equation. But, it is easy to calculate this item in practice 
when we make use of tabular data for mortality. 

Therefore, we can also calculate the duration and M2 for traditional life insurance 
and annuity cash flows. The duration of the portfolio of these products also has the 
linear additive property of duration. Hence, the duration of the total liability of a life 
insurance company is the weighted average of individual policy durations. 

4 Mathematical Justification of the Extension 

In this section, we try to show that expected duration and M2 in Section 3 can be 
used as immunization measures. 

Consider a continuous cash flow bt 2 0, 0 5 t < T. Let J(t) be the forward rate 
given at time t = 0 for the cash flow at time t. Then, the expected value of the cash 
flow at any date t is given by2 

P(t) = /gT b,e~:6(‘)d7g(s)ds. (12) 

The present value at time t = 0 of the cash flow 0 < t 5 T is 

p(o) = jgT b,e-~%)d’g(s)ds, 

and the expected future value of the cash flow at time t = T is 

P(T) = J,’ b,e.f.=6(‘)d’g(s)da. 

Suppose that an instantaneous change in the yield curve occurs as represented by 
a change of the forward rate from 6(r) to J(r) + c(r), 0 < r 5 T. Then, the change 
of the value of the cash flow P(t) is 

&P(t) = IT b,e~~[6(T)+e(T)]dZg(a)dJ - jT b,e-r:6(‘)d’g(s)ds 
0 0 

= J 0 

= b,e~;s(T)dTg(J)[e~:f(r)dT - I]&. (13) 

‘This formulation can be used for life insurances and life annuities. The general valuation formula 

for life annuities can be written as P(t) = j: a,[eJ: s(r)dT ]tpzdr. The interpretation of g(d) is “the 
probability of payment at time 4” in the case of both life insurance and life annuity. Hence it may 
be more convenient to interpret g(r) as a general measure. 
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Denote 
f(s) = Jc(r)dr - 1, 

and assume that e(r) is twice differentiable for all 7. We expand f(a) about the point 
s=t 

(5 - t)’ 
f(s) = f(t) t f’W - 4 + f”(V)~7 

where 7 is between s and t. Since 7 depends on s as well as t, we write t as v(s,~) or 
simply as q(s) for fixed t. 

f’(s) = eJ:+)dr[-e(J)], 

f”(s) = e.C’(T)d’[-e(.g)]” - eJ:Ecl)dT[e’(,9)]. 

Hence, 

f(t) = cl 

and 

f(t) = -e(t) 

f’(q) = es: f@Jd’[(e(q)y - e’(q)]. 

Then 

f(S) = -e(t)(s - t) t 
If we substitute the above equation into equation (13) and simplify, we get 

AP(t) = --E(t) /gT(s - t)b,el:6(r)drg(s)ds 

+ i ~T{J’(r)dT[(e(q))2 - E'(~)]}{(S - t)2b,e~:s(T)dTg(s)}ds. (14) 

Let us denote 

and 

h,(s) = eJ:e0dT[(e(7j))2 - e’(q)], 

h,(s) = (8 - t)2b,el:s(T)dTg(s). 

If we assume f”(9) is continuous, both hi(s) and h r s are continuous functions, and ( ) 
h,(s) 2 0. By th e fi t rs mean value theorem of integration [26], there exists a t E (0, T) 
such that 

lT h(s)hz(s)ds = h(t) jgT h2(4ds. 

Then, we can write equation (14) as follow 

AP(t) = -c(t)lT(s - t)b,e-f:6(T)drg(s)ds 

+ les;(&dT 2 
2 

[E (q(t)) - E’(T(())] lT(s - t)2b,e-r:6(‘)dT~(s)ds. 
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If we divide the above equation by P(t), we then obtain the relative change of the 
value of the cash flow due to the change in the forward rate. 

ap(t)= wt 1 
p(t) P(O)Ji s(s)dr 

--E(t) 
= P(0) 0 / 

- tp.e- J~6(T)d?J(8)ds 

+ e- ftc, r(r)dT k%(t)) - E’(‘i(‘t))l 
WO) I 

oT(8 - t)2b.e-So’b(‘)d’g(s)ds. (15) 

We can see from the above equation that if the first term is zero and the second term 
is positive, we can be sure that &E@ is also positive. That is, we require p(t) 

t = &%,e-S66(7)dfg(s)ds 
P(O) ’ 

and 

Since 

and 
iM2 = g-(6 - D)2b,e-SO16(r)d79(s)ds 

P(O) 
> 

then 
wt> - = -4t)P -t] t C[M2 + (D -t)‘], p(t) 

(16) 

(17) 

where 

It should be noted that if the shock function E(T(~)) is a constant, c2(7](<))-c’(7](<)) > 
0. This yields the Fisher-Weil immunization theorem [25]. 

Following Shiu [20], we do not assume that the shock function here is a constant, 
i.e., a parallel shift of the yield curve. Instead, we assume that the shock function is 
a function of time t. As long as condition (16) holds, immunization is achieved when 
the planning period is equal to the duration. Condition (16) means that the f(z) is 
convex. Hence, we can conclude that if the forward rate changes once, such that the 
shock function satisfies the condition (16), the income stream is immunized to the 
change if the duration of the income stream calculated at the present term structure 
of the interest rate equals the planning period, t. 
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5 Immunization Measures under Stochastic Mod- 
els of Interest Rates 

The previous section uses the assumption of a deterministic additive change of interest 
rates. As pointed by several authors, this assumption gives rise to the arbitrage 
opportunities since arbitrage profits could be earned by having a long position of two 
discount bonds and a short position in a third with an intermediate maturity equal 
to the duration of the long position. Hence, this assumption of the change of interest 
rates is not compatible with equilibrium models of the term structure of interest rates. 

In the past a few decades, different interest models have been proposed. For a 
concise summary of different stochastic models of interest rates, we refer to Sharp [18]. 
Empirical studies have not been able to show that one model describes the real 
data consistently better than alternative ones. The valuation of life contingencies 
under stochastic models of term structure of interest rate has been studied by several 
authors, such as Panjer and Bellhouse [14, 151, Waters [24] and Boyle [6]. Boyle [5] 
examined the question of immunization when the term structure of interest rates 
is stochastic. In the valuation, since both mortality rate and the interest rate are 
stochastic, so the present value of life contingent functions can be expressed as 

P = E(Z) = E,(E,(ZIT)) = E&d*) = irn b*d,g(t)dt, (18) 

where El is the expectation with respect to the stochastic interest rate for fixed t and 
Ez is the expectation with respect to the mortality measure. The discount factor dt 
is the price of a pure discount bond paying one dollar at time t. The variance of 2 
can be written as 

V(z) = Ez(K(W)) + VZ(EI(.V’)). (19) 

From this expression, we see that the variance consists of two component. The term 

EzW(W’)) P re resents the variance of Z due to the stochastic price of the pure 
discount bonds. It is a weighted average of the variance of the pure discount bond 
price and the weights are the probability of death at time t. The term &(,?31(2]11)) 
measures the variability due to mortality, where the variability of interest rate is 
averaged out by taking expectation with respect to it. 

For simplicity, we adopt the following three models of term structure of interest 
rates for the calculation of immunization measures for life contingencies 

l The Panjer and Bellhouse conditional AR(l) model [14, 151; 

a The Vasicek model [22]; and 

s The Cox, Ross and Ingersoll model [9]. 
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The Panjer and Bellhouse AR(l) Model: 

Panjer and Bellhouse [14,15] used AR( 1) and AR(2) models to describe the change 
of the forward rate and showed that they fit a number of interest rate series. Here, 
we examine the AR(l) process only. 

Assume that the forward rate in year t is given by 

Tt = 4 + $&I - 61 + Et, (20) 

where et,t = 1,2,. . . is a white noise process with mean 0 and variance oz. This 
model implies that the forward rates in any year depend upon the forward rate in the 
previous year and some constant level. Given the initial observation TO, the price of 
a pure discount bond of term t can be expressed as 

(21) 
where 

H(z) = g-g+= t A(1 - +=)(I - $)=-‘I. 

Duration for a pure discount bond maturing at time t can be calculated as the 
elasticity of the present value with respect to the initial observation f(0) of the 
conditional AR( 1) process. 

1 r3dt 1 - $s 
D(t) = -j-f& = y--q. (22) 

We can see that the duration of a pure discount bond under this AR(l) model is 
always less than t, and approaches to & as t increases. 

The Vasicelc Model: 

Vasicek [22] assumed that the spot rate follows a diffusion process expressed by 
the following equation 

dr = f(t,r)dt t p(t,r)dzt, (23) 

where zt is a Wiener process with incremental variance dt. The functions f(t,r) and 
p2(t, r) are, respectively, the drift and variance of the diffusion process. Suppose that 
the present value of a pure discount bond P(t, s, r) of term s depends only on the spot 
rate T and the term s. Then P(t,s,T) can also be expressed by a diffusion equation 
after applying Ito’s lemma to P(t, 8, r). 

a’ dP = [$f-jy+yp ’ 2a2p]dt + p$dr 

= Ppdt t Padz (24) 
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where 

This equation holds for bonds of all maturities s. By using an arbitrage argument 
similar to that used to derive the Black Scholes options pricing formula, Vasicek 
showed that the ratio w should not depend on s. In particular, this ratio is 
zero if investors have liquidity neutrality which results in /.~(t, 3,~) = T. Then, we 
obtain a partial differential equation for the price of the pure discount bond from the 
definition of p by equation (26) as follows: 

(26) 

Equation (26) plus the boundary condition P(t, t, r) = 1 gives a complete description 
of pure discount bond price P(t, s, r). If r follows the Ornstein-Uhlenbeck process, 

dr = a(7 - r)dt + pdz, (27) 

the pure discount bond price is given by 

d, = P(t,s,r) = e~p[F(~,t,~)(V(a,p,r)-r)-(~-~)v(~,~,~)-~~(~,~,~)‘] (28) 

where 

F(a, t, 9) = a( 1 - t?-)), 

V(%h7) = 7 - f$. 

The duration of the pure discount bond, calculated as an elasticity of price with 
respect to r, is given by 

D, = -f$ = F(a,t,s). 
# r 

(29) 

The CIR Model: 

Cox, Ingersoll and Ross [8] assumed that the spot rate is described by the following 
diffusion process 

dr = ~(0 - r)dt + v&dz. (30) 
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Under the assumptions of this spot rate and liquidity neutrality, the pure discount 
bond price is given by 

where 

d, = P(t,s,r) = A(t,s,~,8,a2)e-B(t~~~r~e~aa)r (31) 

A(t,s,7,&02) = ( 
27eK”+WM2 

(7 + K)( &r-t)-1 + 

B(0,7,@P2) = 
qe7b-t) - 1) 

(7 + tc)(eY(#-’ - 1) + 27’ 

The duration for a pure discount bond under this model of term structure of interest 
rate is given by 

D, = -$F = B(t,q,e,u”). 
# T (32) 

From the diffusion equation (24), we see that the change in the price of pure 
discount bond when spot rate changes is proportional to g$. Therefore @! L is a 

’ B+P 

proper measure of basis risk for the pure discount bond. For a certain cash flow b1, 
b 2, . . ., b,, due at the times tl, t2, . . . . t,, the present value is (using B for the cash flow) 

P(&B,T) = 

with differential 

cqt, B, T) = 

= 

= 

where 

2 b;dP(t, t;,r) 
id 

(cbiP(t,ti,r)p(t,t;yr))dt t (~biP(t,ti,r)~(t,ti,r))dl 
i=l i=l 

CL(t, W(t, B,r)dt t u(t, B)P(t, B,r)dt, 

p(t,B) = Z=l bip(tt h,T)P(t,ti,T) 

JYt, B, T) 
(33) 

and (under liquidity neutrality, p(t, B) = r) 

wt, 4 r) 
4hB) = P P(t,B,T) * (34) 

Hence, g+ is also a measure of basis risk for a cash flow. 
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Stochastic duration D, defined as the term of a zero coupon bond which has the 
same basis risk as the cash flow [9] 

If we denote 

then the duration, Dg, for the cash flow B = (b,, bz,. . . , b,) is 

where @-’ is the inverse function with respect to s. For the contingent cash flow, this 
formula can be modified as 

For the Panjer and Bellhouse conditional AR(l), 

(38) 

for the Vasicek model, 

and for the CIR model, 

W’(z) = -$og(l - az) (39) 

6 Numerical Examples 

To compare the duration of life contingencies under different assumptions of the term 
structure of interest rates, we construct Table 1 and Table 2. Table 1 gives the present 
value and duration for a pure discount bond of various terms; Table 2 gives the present 
value and duration of term life insurance benefit cash flows. The Canadian Institute 
of Actuaries 1982-1988 Male Mortality Table with a 15-year select period is used in 
the calculation of the present values and the durations of the life insurance cash flows. 
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The parameters in different interest rate models are chosen so that the present value 
of the pure discount bond have broad agreement. 

Table 2 show that the duration increases with the length of the policy, but at a 
decreasing rate. For duration of life insurance with the same term, duration increases 
with the age at early ages and decreases at later ages. The reason is that both interest 
rate and mortality rate affect the calculation of the duration, the effect of interest 
rate on the duration dominates the effect of mortality rate at early ages and vice 
versa at later ages. 

Under different models of the term structure of interest rates, the durations of life 
insurances are similar for short term contracts, but differ substantially for long term 
ones. Durations under the stochastic models are smaller than under the constant 
interest model. For constant interest rates, any small change in the spot rate results 
in a shift of the yield curve of almost equal amount at all maturities; therefore, it 
has a more profound effect on the long term bond than the short one. However, the 
conditional AR(l), Vasicek and CIR models exhibit mean reversion where spot rate 
adjusts itself to its long mean value constantly. Therefore, the change of spot rate has 
a more profound effect on the short term contract than on the long term one [5]. From 
Table 2, we see that the duration for long term contract is almost indistinguishable 
under the conditional AR(l), V asicek and CIR models while it is quite different under 
constant assumption. However, this argument is gradually weakened as the mortality 
rate increases along the age. 

7 Managerial Aspects of the Use of the Extension 

Traditional immunization fails if at least one of the assumptions underlying the model 
fails to hold. For example, Fisher and Weil planning period immunization usually fails 
because the assumption of parallel shifts fails. As in Shiu [20], our result is not based 
on the assumption of parallel shift. In summary, our immunization result is based on 
the following two assumptions: 

1. The shock function satisfies condition (16); 

2. The mortality assumption is appropriate. 

Assumption 2 is implied in our result, since our result is only correct in the “mean” 
sense. Taking n-year term insurance as an example, we know that its expected dura- 
tion is usually less than n. However, if a person dies exactly at age z + n, the single 
death payment is made at age z + n. This results in the actual duration of the single 
payment being much longer than the expected duration. But for a large portfolio, the 
expected duration should provide a good estimate of the duration calculated from the 
cash flow of the liabilities incurred. Moreover, we can use M2 to estimate the extent 
to which the actual duration can possibly deviate from the expected duration. For 
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Table 1: Present Value and Duration of a Payment of $100 Due in n Years 

Years 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
15 
20 
25 
30 
35 
40 
45 
50 
55 
60 
65 
70 
75 
80 
85 
90 
95 
100 

f Constanta + 
95.238 
90.703 
86.384 
82.270 
78.353 
74.622 
71.068 
67.684 
64.461 
61.391 
48.102 
37.689 
29.530 
23.138 
18.129 
14.205 
11.130 
8.7204 
6.8326 
5.3536 
4.1946 
3.2866 
2.5752 
2.0177 
1.5809 
1.2387 
.97055 
.76045 

Parameters va 

i= 

1.0 
2.0 
3.0 
4.0 
5.0 
6.0 
7.0 
8.0 
9.0 
10.0 
15.0 
20.0 
25.0 
30.0 
35.0 
40.0 
45.0 
50.0 
55.0 
60.0 
65.0 
70.0 
75.0 
80.0 
85.0 
90.0 
95.0 
100.0 
r 

t 

Panjer 
96.070 
92.206 
88.421 
84.728 
81.134 
77.645 
74.267 
71.002 
67.852 
64.817 
51.333 
40.451 
31.784 
24.932 
19.537 
15.301 
11.979 
9.3764 
7.3384 
5.7429 
4.4942 
3.5169 
2.7520 
2.1535 
1.6852 
1.3187 
1.0319 
.80744 
7 

= 

‘S 

es for eacn ma 

T AWb 
1.0000 
1.9000 
2.7100 
3.4390 
4.0951 
4.6856 
5.2170 
5.6953 
6.1258 
6.5132 
7.9411 
8.7842 
9.2821 
9.5761 
9.7497 
9.8522 
9.9127 
9.9485 
9.9696 
9.9820 
9.9894 
9.9937 
9.9963 
9.9978 
9.9987 
9.9992 
9.9996 
9.9997 
I . 1 , . 

a. T = 0.05. 
b. 0 = 0.05, q5 = 0.90, 6, = 0.04, u = .Ol. 
c. p = JIaF2, 7 = 0.07, a = 0.1. 
d. u = &%i?%@, p = 0.07, n = 0.1. 

Vasicek’ i= 
95.034 .95163 95.033 .95119 
90.166 1.8127 90.160 1.8096 
85.433 2.5918 85.416 2.5823 
80.859 3.2968 80.825 3.2764 
76.461 3.9347 76.403 3.8986 
72.248 4.5119 72.162 4.4553 
68.227 5.0341 68.107 4.9527 
64.398 5.5067 64.241 5.3965 
60.758 5.9343 60.563 5.7919 
57.306 6.3212 57.070 6.1439 
42.635 7.7687 42.211 7.3942 
31.635 8.6466 31.080 8.0775 
23.449 9.1792 22.834 8.4470 
17.375 9.5021 16.757 8.6457 
12.873 9.6980 12.291 8.7523 
9.5368 9.8168 9.0120 8.8093 
7.0651 9.8889 6.6069 8.8398 
5.2340 9.9326 4.8433 8.8561 
3.8774 9.9591 3.5502 8.8649 
2.8725 9.9752 2.6024 8.8695 
2.1280 9.9850 1.9075 8.8720 
1.5764 9.9909 1.3982 8.8733 
1.1679 9.9945 1.0249 8.8741 
.86517 9.9966 .75124 8.8744 
.64093 9.9980 .55065 8.8746 
.47482 9.9988 .40363 8.8747 
.35175 9.9993 .29585 8.8748 
.26058 9.9995 .21686 8.8748 

CIR Modeld 

I 
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Table 2: Present Value and Duration of a Life Insurance of $100, Using 
CIA 1982 Male Mortality Table 

I= Ages 

20 

40 

60 

80 

- 
Term 
5 
10 
15 
20 
40 
60 
85 
5 
10 
15 
20 
40 
60 
65 
5 
10 
15 
20 
30 
40 
45 
5 
10 
15 
20 
25 

Parameters 
a. f = 0.05. 

Constant i= 
.36137 2.8037 
.62318 4.9654 
.85772 7.1536 
1.0859 9.4351 
2.7679 23.325 
6.3034 38.836 
8.0052 44.789 
.45932 3.2648 
1.2260 6.3402 
2.4057 9.6856 
4.0515 13.103 
13.673 25.682 
18.267 30.973 
18.304 31.035 
3.1897 3.3576 
8.6843 6.3907 
16.054 9.4643 
24.016 12.283 
35.339 16.318 
38.304 17.668 
38.416 17.740 
32.568 2.8948 
54.749 4.8777 
65.712 6.1716 
69.086 6.7204 
69.630 6.8408 

c . .ues lor each mc 

Pasjer’s AR(l) 
.36915 \ 

2.7144 
.64363 4.5776 
.89298 6.2621 
1.1374 7.8259 
2.9491 15.584 
6.7495 23.100 
8.5720 25.340 
.47064 3.1763 
1.2751 5.9673 
2.5297 8.8390 
4.2929 11.623 
14.655 20.266 
19.598 22.810 
19.637 22.828 
3.2703 3.2730 
9.0351 6.0351 
16.872 8.6543 
25.400 10.874 
37.583 13.565 
40.779 14.241 
40.900 14.268 
33.289 2.8041 
56.531 4.5218 
68.178 5.4947 
71.789 5.8411 
72.374 5.9041 

el: 

f Vasicek 7= 
.35740 2.6962 .35731 2.6893 
.60653 4.4989 .60582 4.4551 
-81894 6.0866 .81666 5.9684 
1.0147 7.5215 1.0096 7.2926 
2.2481 14.302 2.1944 13.108 
4.3512 20.621 4.1379 18.165 
5.1980 22.378 4.8945 19.514 
.45311 3.1581 .45296 3.1506 
1.1811 5.8897 1.1790 5.8389 
2.2473 8.6656 2.2371 8.5182 
3.6580 11.327 3.6273 11.030 
10.818 19.305 10.522 18.112 
13.682 21.466 13.193 19.868 
13.701 21.479 13.210 19.878 
3.1450 3.2555 3.1439 3.2482 
8.3638 5.9611 8.3490 5.9121 
15.030 8.4891 14.965 8.3505 
21.864 10.596 21.701 10.330 
30.871 13.062 30.475 12.544 
33.007 13.641 32.519 13.032 
33.081 13.662 32.588 13.049 
32.194 2.7857 32.185 2.7785 
53.332 4.4495 53.273 4.4096 
63.295 5.3617 63.167 5.2786 
66.208 5.6733 66.041 5.5653 
66.654 5.7273 66.477 5.6134 

CIR Model 

b. 0 = 0.05, 4 = 0.90, S, = 0.04, u = .ol. 
c. p = m, 7 = 0.07, Q = 0.1. 
d. o = ,/m, p = 0.07, n = 0.1. 
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this purpose, we prefer to use M2 instead of convexity as a second order immunization 
measure. 

Since the expected duration of a portfolio of various contracts is equal to the 
weighted average of the durations of the individual contracts, we just need to know 
how to calculate the duration for each contract. Some identities in actuarial math- 
ematics have some interesting effects on duration analysis. For example, since & + 
& = 1, a portfolio having a whole life insurance and a life annuity paying 6 has a 
zero duration if the interest rate changes once, in a parallel shift. Hence, adding or 
removing this portfolio(or a multiple of it) to the liability does not alter the duration 
of the total liability at all. It can be proven that the expected duration is a decreasing 
function of the force of mortality if the interest rate is constant [17]. So the expected 
duration is also a decreasing function of the age of insured, since the force of mor- 
tality increases as the age increases (at least for higher ages). In practice, we rarely 
use the age of insured6 to underwrite the risk since we charge different premiums for 
different ages. But from the asset/liability management point of view, we can use 
age as an indicator for the increase or decrease of the liability duration. Hence, A/L 
management is an integrated process which has to take consideration of both sides of 
the balance sheet. 

We need to exercise caution if we want to apply stochastic duration in practice. 
First, we have to choose a model of term structure of interest rates. There are a 
number of interest rate models in finance literature; however, empirical studies have 
not been able to show that one model fit the data consistently better than alternative 
ones. This poses a question: which interest rate model should we choose? Second, 
even though we make our choice of an interest rate model, how do we estimate those 
parameters in the model? Since most interest rate models are based on diffusion 
process, interested readers are recommended to refer Basawa and Rao[7]. Third, in 
theory at least, duration analysis and liability valuation should be done on a con- 
sistent basis. Clearly, accounting rules regarding valuation restrict the balance sheet 
asset and liability values. To the extent that these rules are inconsistent with the 
“true” underlying model, immunization of balance sheet surplus may not be attained 
when theoretical immunization occurs. 
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