Analyzing Surplus Appropriation Schemes in Participating Life Insurance from the Insurer’s and the Policyholder’s Perspective

AFIR Colloquium
Madrid, Spain
June 22, 2011

Alexander Bohnert and Nadine Gatzert
University of Erlangen-Nürnberg
Introduction
Motivation

• Participating life insurance contracts:
 – Important product design in German life insurance market
 – Include interest rate guarantees and bonus mechanisms through which profits are distributed and appropriated to the policyholders

• Focus on:
 – Analysis of surplus appropriation schemes, i.e. different ways of how a given amount of surplus, determined by a reserve based distribution system, can be credited to the policyholders’ contracts
Introduction
Aim of paper

- Examine surplus appropriation schemes often inherent in participating life insurance contracts:
 - Bonus system: surplus increases death and survival benefit
 - Interest-bearing accumulation: accumulates surplus on a separate account, death benefit is kept constant
 - Shortening the contract term: death and survival benefit is kept constant, survival benefit is paid earlier

With respect to their impact on:
 - Insurer’s shortfall risk
 - Net present value from a policyholder’s viewpoint

- Conduct this analysis by considering mortality risk as well as market risk
Model framework
Insurance contract and modeling mortality probabilities

- Pool of traditional participating life insurance products:
 - Actuarially priced based on a mortality table (DAV 2008 T)

- Constant annual premium is given by equivalence principle:

\[P \cdot \bar{a}_{x:n} = S_1 \cdot A_{x:n} \]

with \(A_{x:n} = \sum_{k=0}^{n-1} v^{k+1} \cdot p_{x+k} \cdot q_{x+k} + v^n \cdot n \cdot p_x \) and \(\bar{a}_{x:n} = \sum_{k=0}^{n-1} v^k \cdot p_x \)

- Actual mortality rates for risk measurement derived by Lee-Carter (1992) model:

\[
\ln \left[\mu_x, \tau \right] = a_x + b_x \cdot k \tau + \varepsilon_{x,\tau} \Leftrightarrow \mu_x, \tau = e^{a_x + b_x \cdot k \tau + \varepsilon_{x,\tau}}
\]

- Modification by Brouhns, Denuit, and Vermunt (2002):

\[D_{x,\tau} \sim \text{Poisson } E_{x,\tau} \cdot \mu_x, \tau \] with \(\mu_x, \tau = e^{a_x + b_x \cdot k \tau} \)
Model framework

Policy reserves

- Actuarial reserve for individual contract is given by
 \[V_x = S_{t+1} \cdot A_{x+t:n-t} \cdot P \cdot \ddot{a}_{x+t:n-t} \]

- Total portfolio policy reserve is determined by
 \[PR_t = (N - \sum_{i=1}^{t} d_i) \cdot V_x \quad \text{where } N = \text{initial number of contracts sold, } \sum_{i=1}^{t} d_i = \text{number of deaths until year } t \]

- Development of payments over time

<table>
<thead>
<tr>
<th></th>
<th>- 0</th>
<th>+ 1</th>
<th>...</th>
<th>- t</th>
<th>...</th>
<th>- n-1</th>
<th>- n</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>age</td>
<td>x</td>
<td>x+1</td>
<td>Dec. 31st</td>
<td>x+t</td>
<td>Jan. 1st</td>
<td>x+n-1</td>
<td>x+n</td>
<td></td>
</tr>
<tr>
<td>sum insured</td>
<td>0</td>
<td>0</td>
<td>31st</td>
<td>0</td>
<td>0</td>
<td>S_{n-1}</td>
<td>S_n</td>
<td>0</td>
</tr>
<tr>
<td>premium</td>
<td>0</td>
<td>P_0=P</td>
<td>P_1=P</td>
<td>0</td>
<td>P_t=P</td>
<td>0</td>
<td>P_{n-1}=P</td>
<td>0</td>
</tr>
<tr>
<td>dividend</td>
<td>0</td>
<td>D_1</td>
<td>0</td>
<td>D_t</td>
<td>0</td>
<td>D_{n-1}</td>
<td>D_n</td>
<td></td>
</tr>
</tbody>
</table>

Bohnert/Gatzert "Analyzing Surplus Appropriation Schemes in Participating Life Insurance"
Model framework
Development of the asset base

• Asset portfolio follows a geometric Brownian motion

\[dA(t) = \mu \cdot A(t) \cdot dt + \sigma \cdot A(t) \cdot dW^P(t) \]

• Portfolio is composed of bonds and stocks, with a continuous one-period return of the portfolio, given by

\[r_t = a \cdot r_S + 1 - a \cdot r_B, \text{ with } E(r_t) = m = \mu - 0.5\sigma^2 \]

• Assets at the end of year \(t \), after accounting for decrements in the portfolio of policyholders due to death, results to

\[A_t^- = A_{t-1}^+ \cdot \exp \ [r_t - S_t \cdot d_t], \text{ with } A_0^- = 0, A_0^+ = E_0 + P \cdot N \]

payment of death benefits,

\(S_t \) = sum insured, depends on surplus scheme,
\(d_t \) = number of deaths in year \(t \)
Model framework

Surplus appropriation schemes

- Actual policy interest rate credited to the policyholders for period \(t-1 \) until \(t \), based on a smoothing scheme by Grosen and Jørgensen (2000), is given by

\[
 r_t^P = \max \left\{ r^G, \alpha \cdot \left(\frac{B_{t-1}^+}{PR_{t-1}^- + IA_{t-1}^- + RD_{t-1}^-} - \gamma \right) \right\}
\]

where

- \(\alpha = \) surplus distribution ratio
- \(\gamma = \) target buffer ratio
- \(r^G = \) guaranteed interest rate

- Surplus for the \(t \)-th year results to

\[
 PR_{t-1}^- \cdot r_t^P - r^G
\]

amount is used differently within each of the 3 companies depending on the concrete appropriation scheme.
Model framework

Appropriation scheme: bonus system

1. Bonus system:
 - Surplus is used to increase the initially guaranteed sum insured S_1 (death and survival benefit)
 - Done by using the surplus as a single premium for an additional contract of the same type with same maturity:

$$\Delta S_t \cdot A_{x+t}^{n-t} = PR_t \cdot r_t^P - r_t^G \left/ N - \sum_{i=1}^{n} d_i \right.$$

Increased sum insured is given by $S_{t+1} = S_t + \Delta S_t$
Model framework

Appropriation scheme: interest-bearing accumulation

2. Interest-bearing accumulation:
 - Sum insured is kept constant, i.e. $S_t = S_1$, $\forall t = 1, \ldots, T$
 - Surplus is accumulated on a separate account, IA_t

 - Forward projection of the interest-bearing accumulation account is given by
 \[
 IA_t = IA_{t-1} \cdot (1 + r^{IA}) \cdot \left(1 - d_t / N - \sum_{i=1}^{t-1} d_i\right) + PR_{t-1} \cdot r^p_t - r^G
 \]

 Adjustment for death: funds that belonged to policyholders that died within the t-th year, are passed to the collectivity of policyholders

Bohnert/Gatzert “Analyzing Surplus Appropriation Schemes in Participating Life Insurance”
Model framework

Appropriation scheme: shortening the contract term

3. Shortening the contract term:
 - Surplus is used to decrement the remaining years to maturity (contract term $n(t)$ is a function of time t)
 - Reduce the contract term for full years only

 $$RD_t = RD_{t-1^+} \cdot \left(1 + r^{RD} \right) \cdot 1 - d_t / \left[N - \sum_{i=1}^{t-1} d_i + PR_{t-1^-} \cdot r^P_t - r^G_t \right], \quad RD_0 = 0$$

 - Policy reserve incl. surplus for an individual insured

 $$V_{x \up{surplus}} n \ t - 1 = V_x n \ t - 1 + RD_{t-1^-} / \left[N - \sum_{i=1}^{t-1} d_i \right]$$

 - Determine the years to reduce the contract term

 $$k_{\max t} = \max_{k \in K t} k: V_{x \up{surplus}} n \ t - 1 - V_x n \ t - 1 - k \geq 0$$

 with $K t = 0, \ldots, n t - 1 - t$

 new policy period is given by

 $$n t = n t - 1 - k_{\max t}$$

Bohnert/Gatzert “Analyzing Surplus Appropriation Schemes in Participating Life Insurance”
Model framework
Evaluating the surplus appropriation schemes

• Shortfall probability (assets not sufficient to cover liabilities):

$$SP = P \quad T_s \leq T \quad \text{with} \quad T_s = \inf \quad t \quad A_t^{-} < PR_t^{-} + IA_t^{-} + RD_t^{-} , \quad t = 1, \ldots, T$$

• Net present value from a policyholder’s viewpoint = expected value of insurance benefits - premiums

$$NPV = E^{Q} \left(\sum_{t=0}^{T-1} t p_x' \cdot q'_{x+t} \cdot S_{t+1} \cdot e^{-t+1 \cdot r_f} - t p_x' \cdot P \cdot e^{-t \cdot r_f} \cdot 1 \quad T_s > T \right)$$

$$+ E^{Q} \left(TP_x' \cdot S_T + IA_T^{-} + RD_T^{-} + TB_T \cdot \frac{1}{N - \sum_{i=1}^{t} d_i} \cdot e^{-T \cdot r_f} \cdot 1 \quad T_s > T \right)$$

$$+ E^{Q} \left(\sum_{t=0}^{T-1} t p_x' \cdot A_t^{-} \cdot e^{r_{t+1}} \cdot 1 - c \cdot \frac{1}{N - \sum_{i=1}^{t} d_i} \cdot e^{-t+1 \cdot r_f} - t p_x' \cdot P \cdot e^{-t \cdot r_f} \right) \cdot 1 \quad T = t + 1$$
Numerical results

Input parameters

Assets

<table>
<thead>
<tr>
<th></th>
<th>stocks</th>
<th>bonds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expected one-period returns</td>
<td>8.00%</td>
<td>6.02%</td>
</tr>
<tr>
<td>Volatility</td>
<td>21.95%</td>
<td>3.30%</td>
</tr>
<tr>
<td>Correlation between stocks and bonds</td>
<td>-0.1648</td>
<td></td>
</tr>
<tr>
<td>Stock portion</td>
<td>10%</td>
<td></td>
</tr>
<tr>
<td>Risk-free rate</td>
<td>3%</td>
<td></td>
</tr>
</tbody>
</table>

Liabilities

<table>
<thead>
<tr>
<th></th>
<th>r^G</th>
<th>r^A</th>
<th>r^{RD}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rate of interest</td>
<td>2.25%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Number of contracts sold</td>
<td>100,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sum insured in $t = 0$</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Level premium for $T = 30$</td>
<td>0.0247</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contract term</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age of the policyholders in $t = 0$</td>
<td>35</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Numerical results

Shortfall risk

- SP as a function of stock portion and shock to mortality

$SP = 0.05$ for:
- Bonus system $a = 19.81\%$
- Interest-bearing accum. $a = 21.11\%$
- Shortening contract term $a = 20.54\%$

Diagram:

- **shortfall probability**
 - x-axis: stock portion a
 - y-axis: shortfall probability
 - Colors and markers indicate different strategies:
 - Red circle: bonus system
 - Green cross: interest-bearing accumulation
 - Blue line: shortening the contract term

- **shortfall probability**
 - x-axis: shock to mortality δ
 - y-axis: shortfall probability
 - Markers indicate the effect of increasing shock to mortality by +50%
Numerical results

Shortfall risk

- SP as a function of contract term T

<table>
<thead>
<tr>
<th>Shortfall probability for $a = 10%$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contract term T</td>
</tr>
<tr>
<td>25</td>
</tr>
<tr>
<td>30</td>
</tr>
<tr>
<td>35</td>
</tr>
<tr>
<td>40</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Shortfall probability for $a = 25%$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contract term T</td>
</tr>
<tr>
<td>25</td>
</tr>
<tr>
<td>30</td>
</tr>
<tr>
<td>35</td>
</tr>
<tr>
<td>40</td>
</tr>
</tbody>
</table>

- bonus system
- interest-bearing accumulation
- shortening the contract term

Bohnert/Gatzert “Analyzing Surplus Appropriation Schemes in Participating Life Insurance”
Numerical results
Net present value

- NPV as a function of stock portion and shock to mortality

![Graph showing NPV as a function of stock portion and shock to mortality]
Summary

• Results show: Even if the smoothing surplus distribution scheme is the same, the impact of the concrete surplus appropriation (with respect to guaranteed death/survival benefits) differs substantially:

 - Insurer’s risk situation, from highest to lowest: 1) bonus system – 2) shortening contract term – 3) interest-bearing accumulation
 - Net present value from policyholder’s viewpoint: 1) shortening contract term – 2) interest-bearing accumulation – 3) bonus system

• Increasing gap in shortfall risk between 3 schemes for higher stock portions and higher distributed surplus

• In contrast: shock to mortality implies similar increase in risk

• Risk reduction for longer contract periods not as effective in case of the (most common) bonus system, especially for high stock portion
Analyzing Surplus Appropriation Schemes in Participating Life Insurance from the Insurer’s and the Policyholder’s Perspective

Thank you very much for your attention!

AFIR Colloquium
Madrid, Spain
June 22, 2011

Alexander Bohnert and Nadine Gatzert
University of Erlangen-Nürnberg