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Abstract 
In this paper we will present a model to generate simultaneous random returns on 
traditional and alternative investments. We will use this method to estimate the risks 
associated with the inclusion of alternative investments in a traditional investment 
portfolio, where the investment horizon is one month. As we will show, a rather 
sophisticated model is needed to get an adequate impression of the inherent risk of 
investing in alternative investments. The traditional portfolio consists of bonds and 
equity and the returns of this portfolio have been modeled with the normal 
distribution. Alternative investments include, among others, hedge funds, high yield 
bonds, commodities, convertibles, real estate and emerging markets debt. The returns 
of the alternative investments have been modeled with the normal inverse gaussian 
distribution, as this distribution allows for skewness and heavy tails. The dependence 
between the returns of the traditional portfolio and the returns of the portfolio 
consisting of the alternative investments has been modeled with the student copula.  
The risks associated with the portfolio of traditional and alternative investments are 
measured with Value at Risk and Expected Shortfall. These risk measures are 
computed with Monte Carlo simulation. With the use of the normal inverse gaussian 
distribution instead of the normal distribution, the Value at Risk and Expected 
Shortfall are much larger.  
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Introduction 
Investing in alternative investments has proved to be a good way to diversify a 
traditional portfolio consisting of equity and investment grade bonds. However, the 
inclusion of alternative investments in a traditional portfolio creates problems in the 
assessment of the risks of the new portfolio, since this introduces skewness and 
kurtosis (fat tails) to the probability distribution of the returns of a combined portfolio. 
The returns of a traditional portfolio, consisting of bonds and equity offer no real 
problems in risk management because the distribution of these returns can be well 
modeled with the normal distribution. The historical returns of many alternative 
investments however show characteristics that are highly incompatible with the 
normal distribution. 
We have tested the assumption of a normal distribution for the monthly returns of the 
traditional and alternative investments with the Bera-Jarque statistic [Bera87], using 
monthly dollar denominated indices. We also have included three portfolios of equity 
and bonds: “trad 25-75”, “trad 50-50” and “trad 75-25”. The first number is the 
percentage of equity in the portfolio and the second number is the percentage of 
bonds. We further included two portfolios of alternatives: “alt 1” and “alt 2”. The first 
consists of equal parts hedge funds, commodities, high yield bonds, convertibles, real 
estate and emerging markets debt. The second alternative portfolio consists of large 
portions of convertibles and commodities (both 30%) and equal parts hedge funds, 
high yield bonds, real estate and emerging markets debt. 
The Bera-Jarque test uses the skewness and the (excess) kurtosis of the returns to test 
the assumption of normality. If 3γ̂  represents the skewness and 4γ̂  represents the 
kurtosis of the returns, than the Bera-Jarque statistic is defined as: 

)24/ˆ6/ˆ(ˆ 2
4

2
3 γγ += nT  

with n  the number of returns in the observed period. If the returns follow the normal 
distribution, the Bera-Jarque statistic has a asymptotic 2

2χ  distribution. The 
confidence level of the test is 95%, the critical value by this confidence is 5.99. 
 
We have used the following data: 
 

equity MSCI World total return 
bonds Salomon World index total return 
hedge funds Hedge Fund Research fund weighted composite index 
commodities Goldman Sachs Commodity Index 
high yield Merrill Lynch high yield 175 total return index 
convertibles IA Monthly Convertible total return index  

(January 1994 – January 1998) 
Goldman Sachs global convertible total return index 
(February 1998 – March. 2002) 

real estate Salomon Smith Barney total return index 
em. markets J.P. Morgan EM. Markets Bond Index + Composite – Return Ind. 

(OFCL) 
 

The longest period for which we were able to obtain data of all indices was January 
1994 to March 2002. 
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Bera-Jarque test 
 

 skewness kurtosis  T̂   reject 
normality 

equity -0.62   0.67    8.19 yes 
bonds  0.41   0.67    4.61 no 
trad 25-75  0.08   0.41    0.81 no 
trad 50-50 -0.27 -0.12    1,30 no 
trad 75-25 -0.50   0.26    4.39 no 
hedge funds -0.55   2.81   37.54 yes 
commodities   0.38   0.44    3.15 no 
high yield -0.76   3.35   55.88 yes 
convertibles   0.05   0.05    0.05 no 
real estate -0.50   0.70    6.11 yes 
em. markets -2.04   9.27 422.85 yes 
alt 1 -0.89   2.89   47.63 yes 
alt 2 -0.16  0.89     3.68 no 

Period: January 1994 - March 2002 
 
Although normality is rejected for equity returns, normality cannot be rejected for a 
combination of equity and bonds. The skewness and kurtosis of the traditional 
portfolio are even closer to zero than the skewness and kurtosis of the returns on just 
bonds alone.  
For hedge funds, high yield bonds, emerging markets debt and real estate, the 
situation is different. These assets have highly nonnormal distributed returns. These 
returns exhibit negative skewness, so negative returns are on average larger than the 
positive returns. Furthermore, they have very fat tails, which means that there are 
more and greater outliers. Even if we combine them, the distribution of the resulting 
returns is still skewed and has fat tails. Only if they are combined with large fractions 
of convertibles and commodities, the distribution of the returns will be close to the 
normal distribution. 
The aim of this paper is to develop a method which is capable to asses the risks of a 
portfolio of traditional and alternative investments. The risks we want to quantify are 
the risks of very unlikely and unfavorable outcomes of the investments: excessive 
negative monthly returns. The appropriate risk measures are Value at Risk and 
Expected Shortfall. Value at Risk gives the maximum possible loss over a specified 
time horizon of a portfolio with a certain specified confidence. The Expected Shortfall 
gives the average return on a portfolio over a specified time horizon, given that the 
return will be beneath a certain lower bound. With these two risk measures, one has 
information about the worst outcomes of an investment. 
Why should a new model be developed? Value at Risk and Expected Shortfall can be 
directly estimated from the history of appropriate indices. The only problem is the 
required length of the historic period. If one is interested in the risks associated with 
large negative returns that will occur less than once in a hundred times, more than 
hundred months of history are required. For a reliable estimation several thousands of 
returns are required. Since indices for most alternative investments go back no longer 
than the early nineties, a simulation approach is needed. 
In order to simulate, we will construct a model that provides an adequate reflection of 
the relevant characteristics of the returns of traditional and alternative investments. 
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The model 
We will model two portfolios: the traditional portfolio and the alternative portfolio. 
For these two portfolios the distribution of the returns and the dependence structure 
have to be specified. 
As we have seen in the introduction, the assumption of normally distributed monthly 
returns cannot be rejected for a portfolio consisting of investment grade bonds and 
equity. The skewness and kurtosis were in fact very close to zero, so the normal 
distribution is a good model for the returns of the traditional portfolio. Furthermore, 
we assume that the returns are identically and independently distributed, which is a 
valid assumption for monthly returns. The indices we used showed no significant 
autocorrelation for either equity or bonds.   
We will let the proportion of bonds or equity in the portfolio unspecified. We only 
need the mean tradµ  and standard deviation tradσ  of the traditional portfolio. 
For the alternative portfolio, the normal distribution is not the appropriate distribution 
to model the returns with, due to negative skewness and fat tails, which increase the 
likelihood of large negative returns. Therefore we need a distribution with adjustable 
skewness and kurtosis, which gives a higher probability to outliers than the normal 
distribution. We choose the normal inverse gaussian distribution to model the 
distribution of the returns of the alternative portfolio with. This distribution is used in 
[Prau99] and [Bølv00] to model equity returns. The normal inverse gaussian 
distribution is included in the class of generalized hyperbolic distributions, introduced 
by [Barn77]. 
The normal inverse gaussian distribution has four parameters: a location parameter 
µ , a scale parameter δ , and two shape parameters α  and β . We denote the normal 
inverse gaussian distribution by ),,,NIG( βαδµ . If we set 0=µ  and 1=δ , we have 
the standard normal inverse gaussian distribution, which we denote by ),SNIG( βα . 
The probability density function of the ),,,NIG( βαδµ  distribution is defined as: 
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The function vK  is the modified Bessel function of the third kind with index v : 

( ) yyyzyz v
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This probability distribution has considerably fatter tails than the normal distribution 

as can be seen by the fact that ( ) exp.~)( 2
3

SNIG xxxconstxf βα +−−
 if ±∞→x  as 

opposed to the tail behavior of the standard normal density: ( ) exp.~)( 2
2
1 xconstx −ϕ .  
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There is a simple relation between the normal inverse gaussian distribution and the 
standard normal inverse gaussian distribution: 

),,,NIG(~),SNIG(~ βαδµδµβα XX +⇔  
In appendix 1 we derive formulas for the mean, variance, skewness and kurtosis of the 
normal inverse gaussian distribution. It follows that  0Kurt[X] > , so this distribution 
has more kurtosis than the normal distribution. In fact, the kurtosis can assume every 
desired positive value. Skewness is limited by the kurtosis, since 

]Kurt[ ]Skew[ 5
3 XX ≤ . 

With explicit formulas for the mean, variance, skewness and kurtosis, we have a 
simple way to estimate the parameters µ , δ , α  and β  by solving the equations of 
the mean, variance, skewness and kurtosis (see appendix 1). For the remainder of this 
paper we consider the parameters altµ , altδ , altα  and altβ  of the distribution of the 
portfolio of alternative investments as given. 
 
We now focus on the modeling of the dependence between the traditional and the 
alternative portfolio. It is a well known fact that simultaneous large negative returns 
on different asset classes tend to occur far more often than models based on the 
multivariate distribution predict. For example, most asset classes showed large 
negative returns in August 1998 and September 2001. This phenomenon is called tail 
dependence. Mathematically, two stochastic variables 1R  and 2R  with distribution 
functions 1F  and 2F  have (lower) tail dependence if: 

0)](F|)(FP[lim 11220
>≤≤=

↓
ααλ

α
RRL  

Tail dependence is a property of the dependence structure, for which the correct name 
is copula, and is independent from the marginal distributions 1F  and 2F . The copula 
associated with two stochastic variables 1R  and 2R  with distribution functions 1F  and 

2F  is the bivariate distribution function of the two dimensional uniform stochastic 
variable ( ))(F),(F 2211 RR . With copulas, the dependence structure can be modeled 
independent from the marginal distribution functions. i 
In order not to underestimate the risks associated with the occurrence of simultaneous 
outliers of both the returns of the traditional and the alternative portfolio, we will 
model the dependence between the two portfolio with a copula that has tail 
dependence. 
Since the bivariate normal distribution does not posses this quality, we cannot copy 
the copula of this distribution. Therefore we use the copula of the bivariate student 
distribution, the so-called student copula, which does possess tail dependence and has 
some nice computational properties.  
The copula of the bivariate student distribution with v  degrees of freedom and 
correlation ρ  is defined as: 
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with 1−
vt  the inverse student distribution function with v  degrees of freedom.  

The tail dependence that goes with the student copula is: ii 
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From this formula, we see that tail dependence decreases with a increase in the 
degrees of freedom. So smaller degrees of freedom give a higher probability of 
simultaneous extreme negative returns. For ∞→v  this copula converges to the 
gaussian copula from the bivariate normal distribution with correlation ρ  and tail 
dependence 0=Lλ . 
We now have all required ingredients for a realistic model of the monthly returns on a 
traditional and an alternative portfolio. We have specified the marginal distributions 
of the returns and the dependence between the returns on the different portfolios. In 
this paper, we will not give attention to the estimation of the parameters of the 
marginal distributions and the student copula. Estimation is a complex topic, which 
deserves its own discussion. iii 

Computation of the risk measures 
Our aim is the evaluation of the risk measures Value at Risk and Expected Shortfall 
for a portfolio consisting of %100 p  traditional investments and )%1(100 p−  
alternative investments, where our investment horizon is month ahead. Let 

),N(~ 2
tradtradtrad σµR  be the stochastic monthly return on the traditional portfolio and 

),,,NIG(~ altaltaltaltalt βαδµR  be the stochastic monthly return on the alternative 
portfolio. The stochastic monthly return on the total portfolio is therefore 

alttradtot )1( RppRR −+= . The distribution function of these returns is totF . Since this 
distribution function is continuous, the Value at Risk with α−1  confidence is defined 
according to the following simple formula: )(FVaR -1

tot αα = . So the probability of a 
return on the portfolio below αVaR  is α . The Expected Shortfall with α−1  
confidence is the expected return on the portfolio, given that this return is below 

αVaR , more formally: ]VaR|E[ES tottot αα ≤= RR . 
With our choices for the marginal distributions and the copula, these risk measures 
cannot be computed analytically, so we will use Monte Carlo. We shall develop 
methods to generate N  random variates ( ) ( )NN rrrr alttrad

1
alt

1
trad ,,...,,  from the correct 

bivariate distribution and compute the random portfolio returns 
iii rpprr alttradtot )1( −+= . Next, we order these returns from the lowest to the highest 

return to end with the numbers )(
tot

)1(
tot ,..., Nrr . We are now able to compute αVaR  and 

αES . Define � 	Nn αα = , with � 	⋅  the function that rounds down towards the nearest 
integer, we assume 0>αn . We then have: 
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totVaR α

α
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and 
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These quantities become of course more accurate with increasing N .  
The only problem left is the generation of the numbers ( )ii rr alttrad , . The most direct way 

to do this is first to generate numbers  ( )ii uu alttrad ,  with the student copula, which is in 
fact a bivariate uniform probability distribution and then transform these numbers 
with the inverse marginal distribution functions: 
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While it is certainly possible do generate random variates with this approach, we 
choose a slightly different approach in order to circumvent the computation of -1

altF , 

which is quite hard to evaluate. We first generate the random variates iralt , appendix 2 
describes how, scale them to ensure they have the right mean and variance and 
transform according to the formula: 
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with -1
vt  the inverse student distribution function with v  degrees of freedom and SNIGF  

the distribution function of the normal inverse gaussian distribution with parameters 

altα  and altβ . In appendix 2 we describe a simple algorithm to compute SNIGF . The 

numbers italt  are random variates from the student distribution. 
Now we use the following fact about the bivariate vt  distribution. Let ( )YX ,  have the 
bivariate student distribution with v  degrees of freedom, then the following relation 
holds: 
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We use this fact to generate the vt -distributed random variates 
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with 1~ +vtt  and subsequently transform these numbers to the normal distribution to 
arrive at: 

( ))( trad
1
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i

v
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with 1−Φ  the inverse normal distribution function. Due to the finite number of 
simulations, the sample mean and variance of the constructed numbers irtrad  shall in 

general deviate form their exact values tradµ  and 2
tradσ , so they should be scaled to 

correct this. 

Application 
In this section, we will demonstrate our model. We start with a traditional portfolio 
consisting of 50% equity and 50% bonds. To this portfolio we will add hedge funds, 
keeping the ratio equity to bonds fixed. We will compute the Value at Risk and 
Expected Shortfall for %5=α  and %5.0=α  for each fraction of hedge funds in the 
portfolio, both with the model developed in this paper (model 1) and under the 
assumption that the returns of all investments are normally distributed (model 2). 
The parameters of our model will be estimated using actual data. However, caution is 
called for. Several studies indicate that because of survivorship bias, backfilling bias 
and stale price bias estimates of the mean, variance, skewness and kurtosis of hedge 
fund returns will give a flattering picture of the situation. The real values of the mean 
and skewness would be lower and the real values of the variance and kurtosis would 
be higher.iv To deal with this situation, we will not directly estimate the expected 
returns but base them on subjective views.  
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asset class expected return 
equity 8.0% 
bonds 4.5% 

hedge funds 7.0% 
 
With these values, monthly expected returns on the traditional portfolio and the 
alternative portfolio are 0.51% and 0.57% respectively. The volatility, skewness and 
kurtosis of the traditional and the alternative portfolio are not based on subjective 
views, but are estimated using the same indices as we used in the introduction. For 
bonds, equity and hedge funds, we were able to obtain data over the longer period 
Januay 1990 to March 2002. For illustrative purpose, the skewness and kurtosis of the 
traditional portfolio are showed too, but they have no further use in this application.   
 

 volatility skewness kurtosis 
traditional 
portfolio 

2.52% -0.10 -0.11 

alternative 
portfolio 

2.10% -0.71  2.90 

Period: January 1990 - March 2002 
 
The parameters of the normal inverse gaussian distribution of the monthly returns of 
the alternative portfolio can now be determined using the results of appendix 1: 
 

altµ      1.23% 

altδ      2.34% 

altα   1.40 

altβ  -0.38 

 
We also have to determine the parameters of the copula describing the dependence 
between the monthly returns of the traditional and the alternative portfolio. The 
estimated correlation, using the same indices and the same period is 0.54.  With trial 
and error we will determine the value for the copula parameter ρ  that gives us the 
correct correlation between the simulated returns. Before we can do this, we first have 
to specify v , the degrees of freedom of the copula. With 2=v , we have a reasonably 
large tail dependence of 0.39. With all other parameters specified, we can determine 
ρ . With 57.0=ρ  the correlation between the simulated returns equals the actual 
estimated correlation. 
We have simulated 10.000 portfolio returns. The results are shown in the graphs 
below for different percentages of alternatives in the portfolio. The first graph shows 
the expected return and volatility. The second and third graph show the Value at Risk 
and the Expected Shortfall. The Value at Risk and the Expected Shortfall are 
computed for both model 1 and model 2.  
For %5=α , it makes not much difference whether the Value at Risk is computed 
with model 1 or 2. The Expected Shortfall for %5=α  is somewhat larger with model 
1. The difference between the two models becomes really large for %5.0=α . Both 
the Value at Risk and the Expected Shortfall are much larger with model 1, the 
relative difference can amount to 150% for the Value at Risk and to 160% for the 
Expected Return. 



 9 

We can examine which portfolio minimizes the risk. With model 2, the portfolio 
consisting of 65% to 70% hedge funds is the portfolio with minimal risk, irrespective 
of whether risk measure is chosen. With model 1 the situation is different. For fixed 
α , the portfolio minimizing the Value at Risk consists of a larger fraction of hedge 
funds than the portfolio minimizing the Expected Shortfall. Also, with lower values 
for α , the risk minimizing portfolios consists of a smaller fraction of hedge funds. 
With model 1 and %5.0ES  as risk measure, the portfolio with minimal risk consists of 
at most 15% hedge funds, so skewness and fat tails have a large impact on portfolio 
selection. 
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Expected Shortfall

-10,0%

-8,0%

-6,0%

-4,0%

-2,0%

0,0%

0% 10
%

20
%

30
%

40
%

50
%

60
%

70
%

80
%

90
%

10
0%

percentage alternatives

ES 5%
model 1

ES 5%
model 2

ES 0.5%
model 1

ES 0.5%
model 2

 
 

Conclusion 
Returns on alternative investments have properties, such as negative skewness and fat 
tails, which cannot be captured if they are modeled with the (log-)normal distribution.  
In this paper we constructed a model, using the normal inverse gaussian distribution 
for the returns on alternative investments and the normal distribution for returns on 
traditional investments, which explicitly allows for these properties. We developed 
algorithms with which we could generate random returns for a portfolio consisting of 
both traditional and alternative investments. As these random returns have been drawn 
from a skewed and fat tailed distribution, the resulting Value at Risk and Expected 
Shortfall provide a better impression of the inherent risks. We applied this model to a 
traditional portfolio consisting of 50% equity and 50% bonds to which we added 
hedge funds, keeping the ratio equity to bonds fixed. For large fractions of hedge 
funds, the Value at Risk (0.5%) and the Expected Shortfall (0.5%) became about one 
and a half times larger if we allowed for skewness and fat tails, while for small 
amounts of hedge funds the Value at Risk and the Expected Shortfall were almost 
equal to the values we obtained using normal distributed hedge fund returns. 
The results of the simulations were that without the explicit consideration of skewness 
and fat tails, risks associated with catastrophic events that will happen with a very 
small probability like 1% or less, will be greatly underestimated.  
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Appendix 1: Mean, variance, skewness and kurtosis of the normal 
inverse gaussian distribution 
In this appendix, we will derive formulas for the mean, variance, skewness and 
kurtosis of the normal inverse gaussian (NIG). 
The probability density of the NIG distribution with 0=µ  and 1=δ was: 
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Now we derive the moment generating function of ),SNIG(~ βαX : 
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With the cumulant generating function: 
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the first four cumulants can be computed. We use the variable αβρ /= . 
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Let XY δµ += , so ),,,NIG(~ βαδµY . We can easily compute ]E[Y  and ]Var[Y : 
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The skewness and kurtosis are also readily obtained:  
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If we set 0=β , which gives us the symmetric NIG distribution, we get 
α/3]Kurt[ =Y , which shows that the NIG distribution can have any desired level of 

kurtosis. From these formulas we also see: 
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With explicit formulas for the cumulants, we have an easy method to estimate µ , δ , 
α  and β . The first step is to estimate the cumulants. This can be done with the 
unbiased estimators: 
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next we solve the formulas for the cumulants and obtain: 
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Appendix 2: Computation of the distribution function of the normal 
inverse gaussian distribution  
The generalized hyperbolic distribution can be represented1 as a mixture of normal 
densities with different means and variances: 

�
∞

−+=
0

222
GH d),,;gig(),;(),,,,;( wwwwxxf βαδλβµϕµδβαλ  

with ),;( 2σµϕ x  the probability density of the normal distribution with mean µ  and 
variance 2σ  and ),,;gig( ψχλx  the probability density of the generalized inverse 
gaussian distribution: 

( ))(exp
)(K2

)/(
),,;gig( 1

2
11

2/

wwww ψχ
ψχ

χψψχλ λ

λ

λ

+−= −−  

With 2
1−=λ , 0=µ  and 1=δ  we have the standard normal inverse gaussian 

distribution: 

( )( )�
∞

−−− −+−=
0

221
2
12/3

SNIG d)(exp
2

1
),;(),;(

22

wwwwewwxxf βα
π

βϕβα βα  

The weights assigned to the normal densities are given by the probability density of 
the inverse gaussian distribution, for which the usual parameterization is: 

0,
)(

exp
2

),;ig(
2

2
12/3 >��

�

�
��
�

� −−= − x
bx
bxa

x
b

a
bax

π
 

from which we see 22 βα −=a and 22 βα −=b . 
The distribution function of the standard normal inverse gaussian distribution can also 
be represented as a normal mean-variance mixture: 

( ) ( ) wwwwxx d,;ig,;),;(F 2222

0
SNIG βαβαββα −−Φ= �

∞

 

with ),;( 2σµxΦ  the probability distribution of the normal distribution with mean µ  
and variance 2σ . We will use this formula for the computation of SNIGF . We also use 
the identity: 

( )� �
∞

− −=
0

1

0

2 d1/1d)( ttftwwf  

For large N  we therefore have: 

( ) ( )

−

=

− −−−−−Φ≈
1

1

22222
SNIG ,;1/ig1/),1/(;),;(F

N

k

kNkNkNxkNx βαβαββα  

We have omitted the cases 0=k  and Nk =  because in our case we have 
( ) ( ) 01/1lim1/1lim 2

1

2

0
=−=− −

↑

−

↓
tfttft

tt
. 

For the usual values for α  and β , 1000=N  will give us SNIGF  with enough 
precision.

                                                
1 See [Prau99]. 
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Appendix 3: Generating random variates from the normal inverse 
gaussian distribution 
The normal inverse gaussian distribution can be described, as we have seen in 
appendix 2, as a mixture of normal densities, where the mean, variance and weight of 
each normal density is given by the density function of the inverse gaussian 
distribution: 

�
∞

=
0

SNIG d),;ig(),;(),;( wbawwwxxf βϕβα  

with ),;( 2σµϕ x  the probability density of the normal distribution with mean µ  and 
variance 2σ  and ig  the probability density of the inverse gaussian distribution: 

0,
)(

exp
2

),;ig(
2

2
12/3 >��

�

�
��
�

� −−= − w
bw
bwa

w
b

a
baw

π
 

The parameters a  and b  are functions of α  and β : 22 βα −=a , 22 βα −=b . 

Let ),IG(~ 2222 βαβα −−Z , )1,0N(~Y  and Z  and Y independent. The fact that 

SNIGf  is a inverse gaussian mixture of normal densities gives 

us ),SNIG(~ βαβ ZYZ + . 
With this result, we can easily generate a random variate x  from the ),,,NIG( βαδµ  
distribution. We first generate a random variate z  from the inverse gaussian 

distribution with parameters 22 βα −=a  and 22 βα −=b , then generate a random 
variate y  from the normal distribution with mean zβ  and variance z  and finally 
transform y  with the transformation yx δµ +=  to end with the desired random 
variate from the normal inverse gaussian distribution. 
Now we only have to find a method to generate random variates from the inverse 
gaussian distribution. We use the algorithm devised in [Mich76]. This algorithm uses 
the following property of the inverse gaussian distribution: 

( ) 2
1

2

~

),IG(~

χ
bX
bXa

baX

−  

A random variate from the 2
1χ  distribution is obtained by squaring a random variate 

y  from the standard normal distribution. A random variate z  from the inverse 

gaussian distribution is therefore obtained by solving ( ) 022 =−− zbybza . However, 
this equation has two roots: 
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4
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z
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b

y

b
y

b
a

z
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In [Mich76] it is proved that a random variate form the ),IG( ba  distribution is 

obtained if the first root ( 1z ) is chosen with probability 
1bza

a
p

+
=   and the second 

root ( 2z ) with probability p−1 . 



 15 

References 
[Barn77] Barndorff-Nielsen, O.E., Exponentially Decreasing Distributions for 
  the Logarithm of Particle Size, Proceedings of the Royal Society  
  London, A353 (1977), p. 401-419. 
[Bera87] Bera, A.K. & Jarque, C.M., A Test for Normality of Observations and 
  Regression Residuals, International Statistical Review, 55 (1987), p. 
  163-172. 
[Bølv00] Bølviken, E. & Benth, F.E., Quantification of Risk in Norwegian  
  Stocks via the Normal Inverse Gaussian Distribution, in: Norberg R. 
  e.a. (eds.),  Proceedings AFIR 2000 Colloquium, Tromsø, pp. 87-98, 
  2000. 
[Bouy00] Bouyé, E. & Durrleman, V. & Nikeghbali, A. & Riboulet, G. &  
  Roncalli, T., Copulas for Finance: A Reading Guide and some  
  Applications, working paper (2000), Financial Econometrics Research 
  Centre, City University Business School, London. 
[Embr99] Embrechts, P. & McNeil, A. & Straumann, D., Correlation and  
  Dependence in Risk Management: Properties and Pitfalls, working  
  paper (1999), ETH, Zurich. 
[Fung02] Fung, W. & Hsieh, D.A., Benchmarks of Hedge Fund Performance: 
  Information Content and Measurement Biases, Financial Analyst  
  Journal, 58 (2002), 1, p. 22-34. 
[Kat01b] Kat, H.M. & Amin, G.S., Welcome to the Dark Side: Hedge Fund  
  Attrition and Survivorship Bias Over the Period 1994-2001, working 
  paper (2001), ISMA Centre, University of Reading, Reading. 
[Mich76] Michael, J.R. & Schucany, W.R. & Haas, R.W., Generating Random 
  Variates Using Transformations with Multiple Roots, The American 
  Statistician, 30 (1976), p. 88-90. 
[Prau99] Prause, K., The Generalized Hyperbolic Model: Estimation, Financial 
  Derivatives and Risk Measures, Albert-Ludwigs-Universität, Freiburg, 
  1999. 
   
 
                                                
i For more theory on copulas and their use in finance, see [Bouy00]. 
ii For a derivation of this result, see [Embr99]. 
iii Theory and further references can be found in the above mentioned literature, which, at the time of 
writing this paper, could all be downloaded for free from the internet. 
iv See for example [Fung02] and [Kat01b]. 


