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Abstract 
In this paper we present a model for the pricing of a defined 
contribution pension fund with the guarantee of a minimum 
rate of return depending on two risky assets: a financial 
portfolio and the consumer price index. Risk free rates are 
supposed to be deterministic. 
The dependence between the portfolio and the consumer 
price index is modelled using a copula approach and the 
pricing is made via Monte Carlo simulation; some useful 
algorithms are described. 
An application and a comparative static analysis are 
presented. 
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1. INTRODUCTION1 
 
Pension funds with a minimum value guarantee show some structural similarities 
with other insurance products, like equity (or index) - linked life insurance policies 
with an asset value guarantee whose features and mathematical properties have 
been analyzing since the 70’s. In fact Brennan & Schwartz (1976) in their work 
“The pricing of equity-linked life insurance policies with an asset value guarantee” 
recognize for the first time the presence of an embedded option in an ELPAVG 
(“equity linked life insurance policy with an asset guarantee) contract and use the 
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option theory to price the single and periodic premium of this kind of insurance 
products. In particular they find an explicit formula for the pricing of the single 
premium using the valuation model of Black & Scholes (1973) while they apply 
the finite difference equation numerical method to value the periodic one. 
From them on, quite all the works analyzing this kind of insurance contracts (even 
more complex that the first one) used the contract decomposition proposed by 
Brennan and Schwartz to evaluate the implicit options and the price of the 
consequent premia. 
Delbaen (1990), for instance, applies the martingale theory developed by Harrison 
& Kreps (1979) (instead of the Black & Scholes formula) to evaluate the periodic 
premium of policies with a minimum guarantee, while Bacinello & Ortu (1993) 
analyze the case of an insurance contract in which the minimum guarantees are 
endogenous, i.e. they are not fixed as data of the model, but depend on the 
premium (premia) paid. Moreover Bacinello & Ortu (1993) analyze insurance 
contracts not explicitly connected to a minimum amount guarantee but to a 
minimum number of units of the fund that must be bought each time the periodic 
premium is paid. 
Besides these models describing maturity guarantees, which are binding only at the 
expiration of the contract, there is an increasing literature analysing multiperiod 
guarantees (see, for example, Hipp (1996)) with the contract period divided into 
several sub periods with a binding guarantee for each sub period. In this case, if the 
profits don’t reach a fixed minimum amount each period, they must be integrated 
to fulfill the gap. 
The evaluation of this kind of guarantees is again related to the pricing of the 
option embedded in the contract which is, this time, a forward option, and again 
this not necessarily bring to an explicit formula for the single and periodic 
premium. 
The preceding models have a characterizing property: they all assume deterministic 
interest rates. Models assuming a stochastic interest rate have been examined by 
Bacinello & Ortu (1993), Nielsen & Sandmann (1995), Persson & Aase (1997), 
Micocci & Pellizzari & Perrotta (2002). 
 
The purpose of this work is to propose a model useful for the pricing of defined 
contribution pension plans that provide the guarantee of a minimum rate of return 
when this guarantee depends on two risky assets: a financial portfolio and a 
consumer price index. 
The model of valuation uses the traditional paradigms of mathematical finance (no 
arbitrage, risk neutral valuations) but introduce copula functions to model the 
dependence between the two sources of uncertainty (risk). 
The article has the following structure: in section 2 we describe the mathematical 
background of copula functions and we introduce the non-parametric measures of 
association; we present also a list of the most used copulas and their main 
characteristics; section 3 introduces the economic framework and defines the 
pension contract to evaluate; section 4 presents an application and a comparative 
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static analysis together with some algorithms necessary to perform a Monte Carlo 
stochastic simulation; section 5 concludes and outlines further research.  

 
  
2. COPULA FUNCTIONS: MAIN DEFINITIONS AND PROPERTIES 

 
Abe Sklar introduced copula functions on 1959 in the framework of “Probabilistic 
metric Spaces”. From 1986 on copula functions are intensively investigated from a 
statistical point of view due to the impulse of Genest and MacKay’s work “The joy 
of copulas” (1986). 
Nevertheless, applications in financial and (in particular) actuarial fields are 
revealed only in the end of the 90’s. We can cite for example the papers of Frees 
and Valdez (1998) in actuarial direction and Embrechts for what concerns financial 
applications (Embrechts et al., 2001, 2002). 
Copula functions allow to model efficiently the dependence structure between 
variates, that’s why they assumed in this last years an increasingly importance as a 
tool for investigating problems such as risk measurement in financial and actuarial 
applications.  

 
Definition 2.1 A bidimensional copula (“2-copula”) is a function C that satisfies 
the following properties: 

(i) domain [0,1] [0,1]×  

(ii) 
(0, ) ( ,0) 0
( ,1) (1, ) for every [0,1]

C u C u
C u C u u u

= =
= = ∈

 

(iii) C is a function 2-increasing that’s to say 
 

1 2 1 2 1 2 1 2

1 2 1 2

1 1 2 2

( , ) ( , ) ( , ) ( , )
for every ( , ) [0,1] [0,1];( , ) [0,1] [0,1]
such that 0 1and 0 1.

C v v C u u C v u C u v
u u v v

u v u v

+ ≥ +
∈ × ∈ ×

≤ ≤ ≤ ≤ ≤ ≤
 

 
Consequences. 

• C is a distribution function with uniform marginals. Indeed, let’s take two 
uniform variates 1U  and 2U  and construct the vector 1 2( , )U U U= . We 
then have: 

{ }1 2 1 1 2 2( , ) Pr , .C u u U u U u= ≤ ≤  
From properties (ii) we get: 

{ } { }1 2 1 2Pr 0, Pr , 0 0.U U u U u U≤ ≤ = ≤ ≤ =  
 Moreover: 

{ } { }1 2 1 2Pr 1, Pr , 1U U u U u U u≤ ≤ = ≤ ≤ =  
i.e. the marginals of the joint distribution are uniform. 
From property (iii) we get finally: 
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{ }1 1 1 2 2 2

1 2 1 2 1 2 1 2

Pr ,
( , ) ( , ) ( , ) ( , ) 0
u U v u U v

C v v C v u C u v C u u
≤ ≤ ≤ ≤ =

= − − + ≥
 

that means C is indeed a probability distribution. 
• Consider now two one-dimensional probability distributions 1F  and 2F , 

and a bidimensional copula C. It is clear that 
( )1 2 1 1 2 2( , ) : ( ), ( )F x x C F x F x=  

represents a bidimensional distribution with marginals 1F  and 2F . 
Indeed, : ( )i i iU F X=  defines a uniform distribution: 

{ } { } { }1 1Pr Pr ( ) Pr ( ) ( ( ))i i i i i i iU u F X u X F u F F u u− −≤ = ≤ = ≤ = = . 

Besides marginals are: 
1 1 2 1 1 1 1( ( ), ( )) ( ( ),1) ( )C F x F C F x F x∞ = =  

1 2 2 2 2 2 2( ( ), ( )) (1, ( )) ( )C F F x C F x F x∞ = = . 
Fortunately the last result can be inverted, this conduces to the following 
fundamental theorem demonstrated by Sklar: 

 
Theorem 2.1 Let F be a bidimensional distribution, with marginals F1 and F2. 
Then there exists a 2-copula C such that 

1 2 1 1 2 2( , ) ( ( ), ( )).F x x C F x F x=  
If the marginals 1F  and 2F  are continuous, then the copula C is unique. 
 
The previous representation is called canonical representation of the distribution. 
Sklar’s theorem is then a powerful tool to construct bidimensional distributions by 
using one-dimensional ones, which represent the marginals of the given 
distribution. Dependence between marginals is then characterized by the copula C. 
Note moreover that the construction of multidimensional non-gaussian models is 
particularly hard. An approach using copulas permits to simplify this problem, 
moreover one can construct multidimensional distributions with different 
marginals. 
 
Remarks. 
 

• The canonical representation can be written equivalently. Consider two 
continuous distributions 1G  and 2G  and let 1( )i i iY G U−= . The distribution 
G of 1 2( , )Y Y Y=  will be: 

1 21 2 ( , ) 1 1 2 2( , ) ( ( ), ( ))X XG y y C G y G y=  
so that 

1 1
1 2 1 1 1 2 2 2( , ) ( ( ( )), ( ( )))C x x F F G x F G x− −=  

with ( )i i iU F X= , F distribution of 1 2( , )X X . This construction is called 
translation method. 
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• The definition of 2-copula can be generalized analogously to the n-
dimensional case. The canonical form of an n-dimensional distribution 
takes the following form, according to Sklar’s theorem: 

1 1 1( ,..., ) ( ( ),..., ( ))n n nF x x C F x F x=  
where 1 1( ),..., ( )n nF x F x  are the n marginal distributions and C represents an 
n-copula. 

 
2.1 Probability density 

 
Suppose that the bivariate 1 2( , )X X X=  possesses a density function. We can then 
express it by means of the marginal density functions and the copula in the 
following manner: 

1 2 1 1 2 2 1 1 2 2( , ) ( ( ), ( )) ( ) ( )f x x c F x F x f x f x= ⋅ ⋅  
with 

1 2
1 2

1 2

( , )( , ) C u uc u u
u u

∂=
∂ ∂

. 

The condition 1 2 1 2 1 2 1 2( , ) ( , ) ( , ) ( , ) 0C v v C v u C u v C u u− − + ≥  leads to the positivity 
of the density 1 2( , ) 0c u u ≥ . 
In the case of n-dimensional distributions, if the density function exists we will get 
analogously: 

1 1 1
1

( ,..., ) ( ( ),..., ( )) ( )
n

n n n i i
i

f x x c F x F x f x
=

= ⋅∏  

with: 
1

1
1

( ,..., )( ,..., )
...

n
n

n
n

C u uc u u
u u

∂=
∂ ∂

. 

The density of a copula can then be written as 
1 1

1 1 2 2
1 2 1 1

1 1 1 2 2 2

( ( ), ( ))( , )
( ( )) ( ( ))
f F u F uc u u

f F u f F u

− −

− −=
⋅

. 

 
2.2 Copulas examples 

 
We present here some important copulas. 

 
2.2.1 The product copula 

 
The product copula is 1 2 1 2( , )C u u u u⊥ = ⋅  which density is 1 2( , ) 1c u u⊥ = . 
We deduce that a distribution constructed with this copula satisfies: 

1 2 1 1 2 2( , ) ( ) ( )f x x f x f x= ⋅  
which characterizes independence between 1X  and 2X . 
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2.2.2 Gumbel Logistic Copula 

 
The Gumbel Logistic copula is: 

1 11 2
1 2 1 1 2 2

1 2 1 2

( , ) ( ( ), ( ))u uC u u F F u F u
u u u u

− −⋅= =
+ − ⋅

 

where 1 2 1
1 2( , ) (1 )x xF x x e e− − −= + +  is the Gumbel logistic 2-distribution having 

marginals 1 1
1 1( ) (1 )xF x e− −= +  and 2 1

2 2( ) (1 )xF x e− −= + , moreover quantiles have the 
expression 1

1 1 1 1( ) log log(1 )F u u u− = − −  and 1
2 2 2 2( ) log log(1 )F u u u− = − − . 

The density function is: 
1 2

1 2 3
1 2 1 2

2( , )
( )

u uc u u
u u u u

⋅=
+ − ⋅

. 

 
2.2.3 Gumble-Barnett copula 

 
Gumble-Barnett copula is: 

1 2log log
1 2 1 2( , , ) u uC u u u u e ϑϑ −= ⋅ ⋅ . 

One easily verifies that (0, , ) ( ,0, ) 0C u C uϑ ϑ= =  and (1, , ) ( ,1, )C u C u uϑ ϑ= = . 
Density is given by: 

1 2log log2
1 2 1 2 1 2( , , ) [1 (log log ) log log ] u uc u u u u u u e θϑ ϑ ϑ ϑ −= − − + + ⋅ ⋅ . 

 
2.2.4 Normal copula 

 
The normal copula is given by: 

1 1
1( ( ),..., ( ))Ga n

nC u uρ ρ
− −= Φ Φ Φ  

 
where we supposed that 1( ,..., )nZ Z Z=  has normal distribution ( , )nN µ Σ  with 
marginals ( )iF Z  where ( , )i i iiZ N µ Σ∼  and ρ  represents the linear correlation 
matrix corresponding to the covariance matrix Σ .  
We denote n

ρΦ  the multivariate normal distribution function with correlation 

matrix ρ  and 1−Φ  is the inverse of the standard univariate normal distribution. 
The density of the normal copula is: 

1
12

1( , ) exp ( )
2

Tc u Iρ ρ ζ ρ ζ− − = ⋅ − ⋅ − ⋅ 
 

 

where ( )1 1
1( ),..., ( )nu uζ − −= Φ Φ . 

 
2.2.5 Frank copula 
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Frank copula is given by: 
1 2

1 2
1 ( 1) ( 1)( , ; ) log 1

1

u ue eC u u
e

ϑ ϑ

ϑϑ
ϑ

− −

−

 − ⋅ −= − + − 
. 

 
2.2.6 FGM copula (Farlie-Gumbel-Morgenstern) 

 
The FGM copula is given by: 

1 2 1 2 1 2( , ) [1 (1 ) (1 )].C u u u u u uϑ ϑ= ⋅ + − ⋅ −  
 
2.2.7 The t Student copula 

 
Let the variate 1( ,..., ) (0, )n nZ Z Z N= Σ∼  with non-degenerate marginals and let 

X Z
S
νµ= +  

where Z and 2S νχ∼  are independent. We will say that X has a t Student 
distribution with degrees of freedom ν , main µ  (if 1ν > ) and covariance matrix 

2
ν

ν
Σ

−
 (if 2ν > ). 

If iX  has distribution iG , then the distribution function of 1 1( ),..., ( )n nG X G X  is 
the tν  copula ,

tCν ρ  where ρ  is the linear correlation matrix associated to Σ .  
The density of the t copula is: 

21

1/ 2
1 1

2 2

1

11
2 2( ,..., ) | |

1 1
2 2

nn
T

n
n

n i
i

n

c u u

ν

ν

ν ν ξ ρ ξ
νρ

ξν ν
ν

+−
−

−
+−

=

 +     Γ Γ +      
      =

  +   Γ Γ +     
      

∏
 

where Γ  is the gamma function and 1( )i it uνζ −= . 
For ν → ∞  we obtain the normal copula. 

 
2.2.8 Archimedean copulas 

 
Let φ  be a continuous, decreasing and convex function :[0,1] [0, ]φ → +∞  with 

(1) 0φ =  and ( ) ( ) (0)u vφ φ φ+ ≤ . We define an Archimedean copula with generator 
φ  in the following way: 

1( , ) [ ( ) ( )]C u v u vφ φ φ−= +  
with , [0,1]u v∈ .  
If we take 

( ) ( log )t t ϑφ = −  
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with [1, )ϑ∈ +∞  we get the Gumble copula.  
Otherwise in the case 

1( ) tt
ϑ

φ
ϑ

− −=  

with { }[ 1, ) \ 0ϑ ∈ − +∞  we get the Clayton copula: 

( )1/( , ) max [ 1] ,0C u v u vϑ ϑ ϑ
ϑ

− − −= + − . 

If we take ( ) logt tφ = −  we get the product copula C⊥ . 
If we take: 

1( ) log
1

tet
e

ϑ

ϑφ
−

−

−= −
−

 

we get Frank copula. 
If we take: 

( ) log[1 (1 ) ]t u ϑφ = − − −  
we get Joe copula 

1/( , ) 1 [ ]C u v u v u vϑ ϑ ϑ ϑ ϑ− − − −= − + − ⋅ . 
Finally Genest and MacKay show that a copula C is Archimedean if it admits 
partial derivatives and if it exists an integrable function : (0,1) (0, )ξ → +∞  such 
that: 

( , ) ( , )( ) ( )C u v C u vv u
u v

ξ ξ∂ ∂=
∂ ∂

 

for every , [0,1] [0,1]u v∈ × . 
In such a case the generator of the copula is: 

1
( ) ( )

t
t u duφ ξ= ∫  

with 0 1t≤ ≤ . 
The density of the Archimedean copula is: 

[ ]3

''( ( , )) '( ) '( )( , )
'( ( , ))

C u v u vc u v
C u v

φ φ φ
φ

⋅ ⋅= −  

moreover we can define multidimensional Archimedean copulas setting 
1

1 1( ,..., ) [ ( ) ... ( )]n nC u u u uφ φ φ−= + +  
with the additional condition for the generator φ : 

1( 1) ( ) 0
k

k
k

d u
du

φ−− ≥  

for 1k ≥ . We obtain for example the multidimensional Gumble copula 

( )1/

1 1( ,..., ) ( log ) ... ( log )n nC u u Exp u u
ϑϑ ϑ = − − + + −  

 

 
 

2.3 Copulas properties 
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Proposition 2.3.1 A copula C is uniformly continuous in its domain. Besides it can 
be shown that 

1 2 1 2 1 1 2 2( , ) ( , )C v v C u u v u v u− ≤ − + − . 
 
Proposition 2.3.2 Partial derivatives 1C∂  and 2C∂  exist for every 

1 2( , ) [0,1] [0,1]u u ∈ ×  and they satisfy the following properties: 

1 1 20 ( , ) 1C u u≤ ∂ ≤  and 2 1 20 ( , ) 1C u u≤ ∂ ≤ . 
 
Proposition 2.3.3 Let 1 2,X X  be two continuous variates with marginals 1F  and 

2F  and copula 1 2( , )C X X . If 1 2,h h  are two strictly increasing functions on 1Im X  
and 2Im X  then 1 1 2 2 1 2( ( ), ( )) ( , )C h X h X C X X= , in other words the copula function 
is invariant under strictly increasing transformations of the variates. 
 
Having described copulas and their properties, we shall now study some aspects 
linked to the dependence between variates. 
 
2.4 Concordance order 
 
Definition 2.4.1 The distribution F belongs to the Fréchet class 1 2( , )F Fℑ  if and 
only if the marginals of F are 1F  and 2F . 
 
The extremal distributions F −  and F +  in 1 2( , )F Fℑ  are defined as: 

{ }
{ }

1 2 1 1 2 2

1 2 1 1 2 2

( , ) max ( ) ( ) 1,0

( , ) min ( ), ( ) .

F x x F x F x

F x x F x F x

−

+

= + −

=
 

F −  and F +  are also called Fréchet lower bound and Fréchet upper bound. We can 
associate to them the copulas 

{ }
{ }

1 2 1 2

1 2 1 2

( , ) max 1,0

( , ) min , .

C u u u u

C u u u u

−

+

= + −

=
 

The following relations hold 
1 2 1 2 1 2( , ) ( , ) ( , )F x x F x x F x x− +≤ ≤  

for every 2
1 2( , )x x ∈�  and for every 1 2( , )F F F∈ℑ  or in terms of copulas: 

1 2 1 2 1 2( , ) ( , ) ( , )C u u C u u C u u− +≤ ≤ . 
We define now a partial order relation for the set of copulas. 
 
Definition 2.4.2  We say that the copula 1C  is less then the copula 2C  ( 1 2C C≺ ) if 
and only if 

1 1 2 2 1 2( , ) ( , )C u u C u u≤  
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for every 1 2( , ) [0,1] [0,1]u u ∈ × . 
 
The order “� ” is called concordance order and corresponds to the first order 
stochastic domination for distribution functions. It turns out to be a partial order, 
indeed not every copulas can be confronted. The following still hold: C C C− +

≺ ≺  
and C C C− ⊥ +

≺ ≺ . So that we can give the following: 
 
Definition 2.4.3 The copula C represents a positive (negative) dependence 
structure if C C C⊥ +

≺ ≺  (if C C C− ⊥
≺ ≺  respectively). 

 
Remark.  A parametric copula 1 2 1 2( , , ) ( , )C u u C u uϑϑ =  is said to be totally ordered 
if we have 

2 1
C Cϑ ϑ�  for every 2 1ϑ ϑ≥  (positively ordered family) or 

2 1
C Cϑ ϑ≺  

(negatively ordered family). 
We define besides the positive quadrant dependence (“PQD”) in the following 
way: 
 
Definition 2.4.4 Two variates 1 2,X X  are called PQD if they satisfy: 

{ } { } { }1 1 2 2 1 1 2 2Pr , Pr PrX x X x X x X x≤ ≤ ≥ ≤ ⋅ ≤  
for every 2

1 2( , )x x ∈� . In terms of copulas: 1 2( , )C u u C⊥
�  . 

 
We define analogously the negative quadrant dependence (“NQD”) by assuming 
that 1 2( , )C u u C⊥

� . 
 
2.5 Measure of dependence 
 
We introduce now another dependence concept. Recall that: 

{ }
{ }

1 2 1 2

1 2 1 2

( , ) max 1,0

( , ) min ,

C u u u u

C u u u u

−

+

= + −

=
 

with the relation 1 2 1 2 1 2( , ) ( , ) ( , )C u u C u u C u u− +≤ ≤ . 
If we denote (0,1)U U�  the following also hold: 

{ }
{ }

1 2 1 2

1 2 1 2

( , ) Pr ,1

( , ) Pr , .

C u u U u U u

C u u U u U u

−

+

= ≤ − ≤

= ≤ ≤
 

One can prove the following: 
 
Theorem 2.5.1 Suppose that the bivariate (X,Y) has a copula C−  or C+ . So there 
exist two monotonous functions , :u v →� �  and a variate Z such that 
(X,Y)=(u(Z),v(Z)) with u increasing and v decreasing in the case of the copula C− ; 
u and v decreasing in the case of a copula C+ (the converse is true). 
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Using this result we can introduce the following: 
 
Definition 2.5.2 If the couple (X,Y) admits copula C+ , the variates X and Y are 
called comonotonous; in the case of a copula C− they are called 
countermonotonous. 
 
When the distributions 1F  and 2F  are continuous, the last theorem can be 
strengthened in the following manner: 

( )C C Y T X−= ⇔ =  with 1
2 1(1 )T F F−= −�  decreasing; 

( )C C Y T X+= ⇔ =  with 1
2 1T F F−= �  increasing. 

We conclude with a list of suitable properties, which should satisfy a good 
dependence measure between variates: 
 
Definition 2.5.3 A dependence measure δ  is an application which associates to a 
couple of variates (X,Y) a real number ( , )X Yδ  such that: 
(i) ( , ) ( , )X Y Y Xδ δ=  symmetry; 
(ii) 1 ( , ) 1X Yδ− ≤ ≤  normalization; 
(iii) ( , ) 1X Yδ =  if and only if X, Y are comonotonous; 
(iii’) ( , ) 1X Yδ = −  if and only if X, Y are countermonotonous; 
(iv) for every monotonous application :T →� �  we have: ( ( ), ) ( , )T X Y X Yδ δ=  
for T increasing, ( ( ), ) ( , )T X Y X Yδ δ= −  for T decreasing. 
 
Linear correlation satisfies properties (i) and (ii); we shall see later on that rank 
correlation satisfies also properties (iii) and (iv). 
 
Remark. We may want to introduce a property of the form ( , ) 0X Yδ =  if and only 
if X and Y are independent, unfortunately it can be proved that such a property is 
incompatible with (iv). 
 
2.6 Rank correlation 
 
Definition 2.6.1 Consider the variates X, Y with marginals 1F  and 2F  and joint 
distribution F. The Spearman’s rank correlation (“Spearman’s ρ ”) is defined as 

1 2( , ) ( ( ), ( ))S X Y F X F Yρ ρ=  where ρ  is the usual linear correlation. Let 

1 2 1 2( , ), ( , )X X Y Y  two independent couples of variates from F, then Kendall’s rank 
correlation (“Kendall’s τ ”) is given by  

{ } { }1 2 1 2 1 2 1 2( , ) Pr ( )( ) 0 Pr ( )( ) 0X Y X X Y Y X X Y Yτρ = − − > − − − < . 
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We can assume that Sρ  is the correlation of the copula C associated to (X,Y); both 

Sρ  and τρ  measure the monotonic dependence degree between X and Y (whereas 
linear correlation only measure the linear dependence degree). 
We list some fundamental properties of Sρ  and τρ . 
 
Theorem 2.6.2 Let X, Y continuous variates with continuous distributions 1 2,F F ; 
joint distribution F and copula C. We then have: 
(1) ( , ) ( , ); ( , ) ( , )S SX Y Y X X Y Y Xτ τρ ρ ρ ρ= = ; 
(2) if X and Y are independent, then ( , ) ( , ) 0S X Y X Yτρ ρ= = ; 
(3) , [ 1,1]S τρ ρ ∈ − ; 

(4) 
1 1

0 0
( , ) 12 [ ( , ) ]S X Y C u v u v dudvρ = − ⋅∫ ∫ ; 

(5)
1 1

0 0
( , ) 4 ( , ) ( , ) 1X Y C u v dC u vτρ = −∫ ∫ ; 

(6) given the strictly monotonous application :T →� � , Sρ  and τρ  satisfy 
property (iv) of the last section; 
(7) ( , ) ( , ) 1S X Y X Yτρ ρ= =  if and only if C C+= if and only if Y=T(X) with T  
increasing; 
(8) ( , ) ( , ) 1S X Y X Yτρ ρ= = −  if and only if C C−= if and only if Y=T(X) with T  
decreasing. 
 
The rank correlation satisfy then properties (i), (ii), (iii) and (iv) of the last section. 
 
Remarks. 

• for Gumbel copula we have: 
1

τ
ϑρ
ϑ
−=  

  
• for Frank copula: 

1
1 2

1
1

1 12 [ ( ) ( )]

1 4 [1 ( )]
S D D

Dτ

ρ ϑ ϑ ϑ
ρ ϑ ϑ

−

−

= − −

= − −
 

where ( )kD x  is the Debye function defined in the following way: 

( ) 1

0
( ) 1

x i t
i i

iD x t e dt
x

−
= −∫  

which satisfies 1 1( ) ( )
2
xD x D x− = + . 

 
• for Archimedean copula we have: 
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1

0

( )1 4
'( )
u du
uτ

φρ
φ

= + ∫  

• finally for Clayton copula: 

2τ
ϑρ

ϑ
=

+
 

 
The results in section 2 can be found in Roncalli (2000) and in Embrechts et al. 
(2001, 2002). 
 
 
3. THE PENSION CONTRACT AND THE ECONOMIC FRAMEWORK 
 
In this section we introduce our assumptions and notations concerning the 
economic framework and the pension contract to evaluate.  
To this end, we assume initially independence between the financial and 
demographic components just quite like all the authors who model and price these 
kind of insurance products. We delay until a succeeding section to introduce 
definitions and notations concerning life contingencies. 
 
3.1 Notations and assumptions 
 
As usual in financial literature, we assume a perfectly competitive and frictionless 
market, no arbitrage and rational operators all sharing the same information 
revealed by a filtration. 
In this economic framework, we introduce the following variables: 
 
T   the expiration date of the contract 
r(t)   the instantaneous risk-free interest rate; it is supposed to be 
deterministic 
x(t)   the value of a stock index (or reference portfolio) at time t 
p(t)   the value of the consumer price index at time t 
b(t)   the benefit payable at time t 
D   the reference capital invested at time t=0 

( ( ))V b tτ   the market value at tτ ≤  of b(t), payable at time t 
( ( ))V x tτ   the market value at tτ ≤  of x(t), payable at time t 
( , , )C x t Gτ−  the market value at tτ ≤  of a European call option with 

strike price G(t) written on x 
( , , )P x t Gτ−  the market value at tτ ≤  of an European put option with 

strike price G(t) written on x 
( , )v tτ  the price at tτ ≤  of a unitary zero coupon bond with 

maturity time t. 
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We now introduce the dynamics of the state variables characterizing our model. 
 
Reference portfolio. 
As in the Black & Scholes model, we assume that the index (or the reference 
portfolio) price x(t) is driven by the following log-normal stochastic process: 

( ) ( )
( ) x x x

dx t dt d t
x t

µ σ ω= +  

with ,x x Rµ σ +∈  and xω  a standard Brownian motion. 
 
Consumer price index. 
We suppose that p(t) is described, such as x(t), by a lognormal stochastic process: 

( ) ( )
( ) p p p

dp t dt d t
p t

µ σ ω= +  

with ,p p Rµ σ +∈  and pω  a standard Brownian motion. 
 
The dependence between x(t) and p(t). 
As already said in section 1, we model the dependence between the two stochastic 
processes of x(t) and p(t) using copula functions; in particular we use Archimedean 
copulas to describe the dependence between and x pω ω . 
 
3.2 Definition and financial decomposition of the pension contract. 
 
We consider a pension contract that pays at time t a benefit consisting in the 
reference capital increased by the greatest of the two variation rates: the return on a 
financial risky portfolio and the stochastic consumer price index. 
We also assume that, the contractual features require the benefit payable at the end 
of the year t=1,...,T if occurs one of the events provided by the regulations (death, 
invalidity, disability,...) or at maturity. 
The independence between demographic and financial risks allows us to treat the 
benefit, as it should be paid with certainty at the end of a fixed year t introducing 
the demographic component only in a second time. 
With these assumptions, the benefit b(t) is given by 

( ) ( )( ) max , ,
(0) (0)

x t p tb t D h
x p

 
= ⋅  

 
 

with 0 1h≤ ≤  and assuming x(0)=p(0)=H: 

{ }( ) max ( ), ( ), .Db t x t p t h H
H

= ⋅ ⋅  

Knowing that: 
{ } { } { }max , max ,0 max ,0x y x y x y x y= + − = + −  
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b(t) may be written using the “call decomposition2”: 

[ ]{ }( ) max max( ( ), ( )) ,0Db t h D x t p t h H
H

= ⋅ + ⋅ − ⋅  

If h=1, i.e., if the fixed amount guaranteed is the whole reference capital, the last 
equation becomes 

[ ]{ }( ) max max( ( ), ( )) ,0 .Db t D x t p t H
H

= + ⋅ −  

So b(t) is given by the sum of an amount D (the invested capital) and the payoff at 
time t of a call option on the maximum between x and p with strike price equal to 
H, and its value at time 0 is given by: 

0 ( ( )) (0, ) ( , , , )DV b t D v t C x p t H
H

= ⋅ + ⋅  

where C(x,p,t,H) is the price in 0 of a European call option on the maximum 
between x and p, time to maturity t and strike price H. 
So the price of the proposed pension contract depends on the value at time 0 of a 
z.c.b. with maturity t and on the pricing of the implicit European option whose 
evaluation will be the subject of the following section. 
 
3.3 Mortality risk. 
 
After computing the value of the guarantee for a fixed time t, we now introduce the 
mortality risk assuming uncertain the expiration date of the contract. To this end 
we preliminarily give some definitions and assumptions. 
Let (0, )tα  be the probability that the insurance contract will expire in t=1,...,T, for 
one of the causes provided for by the regulation of the fund (death, disability, 
inability, right to get the pension benefit and so on...). If, as usual in actuarial 
practice, we assume that a sufficient number of contracts are written so that the 
demographic risk is eliminated, the single premium will be computed as follows: 

0
1 1

1 1

(0, ) ( ( )) (0, ) (0, ) ( , , , )

1(0, ) (0, ) (0, ) ( , , , )

T T

t t

T T

t t

DU t V b t t D v t C x p t H
H

D t v t t C x p t H
H

α α

α α

= =

= =

 = ⋅ = ⋅ ⋅ + ⋅ = 
 

 = ⋅ ⋅ + ⋅ ⋅ 
 

∑ ∑

∑ ∑

 

where 
1

(0, ) (0, )T

t
D t v tα

=
⋅ ⋅∑  is similar to the single premium of a traditional 

mixed insurance policy (a term insurance plus a pure endowment) while 

                                                           
2 b(t) may assume a more general form if, according to De Felice & Moriconi (1999), we 
define 

( ) ( )( ) max , ,
(0) (0)x p h

x t p tb t D h
x p

β β β
 

= ⋅  
 

 

where ,  and x p hβ β β  are supposed to be constant variables belonging to { }0,1 assuming a 
value equal to one only if the peculiar guarantee they refer to is considered in the contract. 
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1
(0, ) ( , , , )T

t

D t C x p t H
H

α
=

⋅ ⋅∑  represents the additional amount the insured must 

pay because of the presence of the guarantee in the contract. 
Considering the presence of a bivariate risk neutral distribution with copulas, to 
price the option embedded in the contract a Monte Carlo approach must be used 
because no closed form solution to evaluate this peculiar derivative is known.  
 
 
4. THE EVALUATION MODEL AND AN APPLICATION TO THE 
PENSION CONTRACT 
 
According to the standard results in Harrison & Kreps (1979) and Harrison & 
Pliska (1981, 1983) and to the generalization of the option pricing in case of the 
bivariate risk neutral distribution proposed by Rapuch & Roncalli (2001) the price 
of the option embedded in the contract is given by: 

0

( )

0( , , , ) ( )

t

r u du
CC x p t H E Y t e

− ∫ =
  
 

 

where 0 (.)CE  is the date 0 expectation of ( )Y t  taken under the bivariate risk neutral 
distribution with copula and  

( ){ }( ) max max ( ), ( ) ,0Y t x t p t H=   −   
is the payoff of the considered option. 
Because of the presence of the copula function, it seems there is no analytic 
expression for ( , , , )C x p t H  and numerical methods must be introduced. 
In this section we present an application of this approach developed on US data 
concerning the dynamics of US stock markets and US inflation since 1970; the data 
have been obtained by Datastream on an yearly base. 
 
4.1 A Monte Carlo approach 
 
The evaluation of the option embedded in the guarantee proposed in the previous 
sections requires to price a derivative written on two assets, namely the stock index 

( )x t  and the consumer price index ( )p t .  
Both ( )x t  and ( )p t  follow a geometric brownian motion and their dependence 
structure is modelled by an Archimedean copula function. 
If the lifespan of the option is discretized in n steps of length /t T n∆ =  the 
standard way to generate random paths is by using the recursions: 

( )

( )

2
1

2
2

( ) 0.5

( ) 0.5

( ) ( )

( ) ( )

x x

p x

r t t t

r t t t

x t x t t e

p t p t t e

σ σ

σ σ

−∆ − + ⋅Λ ⋅ ∆

−∆ − + ⋅Λ ⋅ ∆

= − ∆ ⋅

= − ∆ ⋅
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where 1 2 and Λ Λ  are standard normal variates whose dependence structure is 
described by an Archimedean copula function. 
To generate them the following algorithm can be used: 
 
1. Generate 1U  and 2U  independent (0, 1) uniform random numbers; 
2. Set ( )1

1 1F U−Λ =  where F is the standard normal cdf; 
3. Calculate 2Λ  as the solution of  
 

( )( ) ( )( )( )
( )( )( )

1(1)
1 2

2 1(1)
1

F F
U

F

φ φ λ φ λ

φ φ λ

−

−

+
=  

 
If we simulate a large number M of bivariate data ( ) ( )( ),k kx t p t , the price of the 

option ( )ˆ , , ,C x p t H  can be estimated by the sample mean: 
 

( ) ( ) ( )0

( )

1

1ˆ , , , max max , ,0

T

r u du M

k k
k

C x p t H e x t p t H
M =

∫
 =   −  ∑  

 
4.2 Estimating Archimedean copulas. 
 
Schweizer & Wolff (1981) established that the value of the parameter α  
characterizing each family of Archimedean copulas can be related to the Kendall’s 
measure of concordance τ . The relationships are shown in the table below. 
 

Table 1  
Relationship between α  and τ  

Family τ  
Gumbel (1990) 11

α
−  

Clayton (1978) 
2

α
α +

 

Frank (1979) 
( )( )1

41 1D α
α

− ⋅ − −  

 
where (.)iD  is the value of the Debye function already described in section 2.6. 
From calculation of the Kendall’s measure of concordance of our bivariate data 
(US stock market returns and US inflation rate), we obtain τ  equal to 0.341. 
This value gives 1.51745α =  for the Gumbel, 1.0349α =  for the Clayton and 

3.39839α =  for the Frank. 
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Now for each of these different copulas we must verify how close it fits the data by 
comparison with the empirical sample. 
This fit test can be made using a procedure developed by Genest & Rivest (1993) 
whose algorithm is well described by Frees & Valdez (1998). 
The procedure has the following steps: 
 

• identify an intermediate variable ( , )i i iZ F X Y=  that has distribution 
function K(z); 

• for Archimedean copulas this function is 
 

1ln ( )( ) d zK z z
dz

αφ −
 = −  
 

 

 
• define 
 

{ }( , ) : ,
1

j j j i j i
i

card X Y X X Y Y
Z

N
< <

=
−

 

 
and calculate the empirical version of K(z), ( )NK z ; 

• reply the procedure for each copula under examination and compare the 
parametric estimate with the non parametric one; 

• choose the “best” copula by using an adequate criterion (like a graphical 
test and/or a minimum square error analysis). 

 
From our data we obtain the following forms of  K(z) for the copulas under 
examination: 
 

Table 2 
The function ( )K z  

Family ( )K z  
Gumbel (1990) ( )lnz zα

α
⋅ −

 

Clayton (1978) ( )1z zαα
α

⋅ + −
 

Frank (1979) 
( ) exp( ) 1exp( ) 1 ln

exp( ) 1
zz z αα α

α
α

 − −− − ⋅  − −   
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The empirical version of ( )NK z  and the three K(z) coming from the fitted 
Archimedean copulas are presented in figure 1 below. 

 
Figure 1 

Empirical and theoretical values of K(z) 

 
 
 
The corresponding mean square errors for the three copulas are 0.1354% for the 
Frank, 0.2763% for the Clayton and 0.2047% for the Gumbel. 
Using this statistics, it is evident both from the figure and from the errors that the 
Frank copula provides the best fit. 
 
4.3 The value of the guarantee and a sensitivity analysis. 
 
In this subsection we present a numerical application of the model described in the 
preceding sections and a sensitivity analysis of the guarantee value through the 
change of the kendall’s τ  and, in this way, of the generator of the best copula. 
The application is made with the following parameters: 
 

• 45x = ; 
• 4T = ; 
• 1t∆ = ; 
• 100D H= = ; 
• ( ) 0.05r t r= = ; 
• 0.20xσ = ; 
• 0.02pσ = ; 
• 0.341τ = ; 
• 3.39839α = . 
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As already said the pension contract pays at time t a benefit consisting in the 
reference capital increased by the greatest of the two variation rates: the stochastic 
return of a financial risky portfolio and the stochastic consumer price index. 
In other terms, using the previous symbols, the pension contract provides a benefit 

( )b T at the maturity T  if the insured is alive or the payment of ( )b t  at time t if the 
insured dies before the maturity of the contract.  
For the demographic technical bases we have used the mortality tables published 
by the Italian national Institute of Statistics (Istat) in 1996. 
In the following tables we show the values of the options embedded in the 
described contract corresponding to the various dates; together we tabulate also the 
probabilities ( )0,tα  described in the section 3.2. 
 

Table 3  
Options value and probabilities 
 t C(x,p,t,H) ( )0,tα  
1 12.71 0.003023 
2 20.61 0.003382 
3 27.61 0.003763 
4 33.54 0.989832 

 
The value of the options embedded in the contract is equal to 33.41. 
It’s important to analyse the sensitivity of the guarantees value to the variation of 
the kendall’s τ  (i.e. to the parameter of the copula’s generator). 
The following graph shows the dynamic of the value of the guarantees value 
through the change of τ . 
 

Figure 2 
The variation of the value of the guarantees through the change of kendall’s τ 
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5. CONCLUSIONS 
 
In this paper we propose a scheme useful to realize the pricing of defined 
contribution pension plans that provide a guarantee of a minimum rate of return 
when this guarantee depends on two risky assets: a financial portfolio and the 
consumer price index. The scheme considers that the dependence between the two 
risky assets can be expressed and modelled through an Archimedean bivariate 
copula and is based on the Monte Carlo method. 
We have performed the numerical simulation to evaluate the values of the options 
embedded in the pension contract for a male aged 45 and a maturity of 4 years 
using a step of discretization of 1 year. Also a sensitivity analysis has been 
conducted. 
In the paper there are also some algorithms useful to generate random numbers 
from a risk neutral Archimedean copula. 
In conclusion we want to highlight that copula functions can represent useful tools 
to realize more refined risk management strategies for the financial risk managers 
of pension funds always following the traditional scheme of risk neural valuations. 
Further lines of research can be found in creating algorithms able to generate 
pseudo-random numbers from multivariate risk neutral copulas and, in this way, 
considering also other forms of risk like, for example, a stochastic risk free interest 
rate. 
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